Normalized defining polynomial
\( x^{16} - 2 x^{15} + 7 x^{14} + 19 x^{13} - 27 x^{12} + 63 x^{11} + 295 x^{10} - 745 x^{9} + 1373 x^{8} + 543 x^{7} - 4113 x^{6} + 7541 x^{5} - 3395 x^{4} - 5465 x^{3} + 12023 x^{2} - 10140 x + 3319 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(932101542235441877906117=7^{10}\cdot 53^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{11} + \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{14} a^{14} - \frac{1}{14} a^{13} - \frac{1}{14} a^{12} - \frac{5}{14} a^{11} - \frac{1}{2} a^{10} - \frac{1}{14} a^{9} + \frac{1}{14} a^{8} - \frac{3}{14} a^{7} - \frac{3}{14} a^{6} + \frac{1}{14} a^{5} - \frac{1}{14} a^{4} - \frac{5}{14} a^{3} + \frac{1}{14} a^{2} - \frac{1}{2} a - \frac{1}{14}$, $\frac{1}{36728758734739331094211538} a^{15} - \frac{37021198849144965602398}{2623482766767095078157967} a^{14} - \frac{735251669652886935137478}{18364379367369665547105769} a^{13} - \frac{124643150657779089188504}{2623482766767095078157967} a^{12} + \frac{519288160754045088751869}{18364379367369665547105769} a^{11} - \frac{370883654879702780984263}{18364379367369665547105769} a^{10} + \frac{5367397202044701578557945}{18364379367369665547105769} a^{9} + \frac{818634566643670563688267}{18364379367369665547105769} a^{8} + \frac{9091988166456338397237199}{18364379367369665547105769} a^{7} - \frac{2244571686725822379058472}{18364379367369665547105769} a^{6} - \frac{3637577094408658543367002}{18364379367369665547105769} a^{5} - \frac{812117822737311288339761}{2623482766767095078157967} a^{4} + \frac{250978926851413867614060}{2623482766767095078157967} a^{3} + \frac{6850080809900460588540927}{18364379367369665547105769} a^{2} + \frac{2545804470513079404289144}{18364379367369665547105769} a - \frac{13459546321273750773524125}{36728758734739331094211538}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 241044.604196 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.2597.2, 8.0.357453677.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $53$ | 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 53.4.3.3 | $x^{4} + 106$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.8.6.2 | $x^{8} + 477 x^{4} + 70225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |