Normalized defining polynomial
\( x^{16} + 6 x^{14} + 72 x^{12} + 570 x^{10} + 2073 x^{8} + 3744 x^{6} + 3744 x^{4} + 3960 x^{2} + 4356 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9316515344280166632259584=2^{40}\cdot 3^{14}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{39} a^{10} - \frac{1}{39} a^{8} + \frac{5}{13} a^{6} - \frac{3}{13} a^{4} - \frac{5}{13} a^{2} - \frac{6}{13}$, $\frac{1}{39} a^{11} - \frac{1}{39} a^{9} + \frac{5}{13} a^{7} - \frac{3}{13} a^{5} - \frac{5}{13} a^{3} - \frac{6}{13} a$, $\frac{1}{2028} a^{12} - \frac{4}{507} a^{10} + \frac{67}{1014} a^{8} + \frac{3}{26} a^{6} - \frac{233}{676} a^{4} - \frac{11}{338} a^{2} - \frac{163}{338}$, $\frac{1}{2028} a^{13} - \frac{4}{507} a^{11} + \frac{67}{1014} a^{9} + \frac{3}{26} a^{7} - \frac{233}{676} a^{5} - \frac{11}{338} a^{3} - \frac{163}{338} a$, $\frac{1}{58290804} a^{14} - \frac{346}{4857567} a^{12} + \frac{12629}{9715134} a^{10} - \frac{199027}{9715134} a^{8} + \frac{48959}{19430268} a^{6} - \frac{1544599}{3238378} a^{4} + \frac{1112935}{3238378} a^{2} + \frac{70604}{147199}$, $\frac{1}{116581608} a^{15} - \frac{173}{4857567} a^{13} - \frac{236477}{19430268} a^{11} - \frac{3188299}{19430268} a^{9} - \frac{7424221}{38860536} a^{7} - \frac{797281}{6476756} a^{5} - \frac{879913}{6476756} a^{3} + \frac{69271}{147199} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 817007.205019 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T493):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.2.6336.1, 4.0.4752.1, 4.2.1728.1, 8.0.361304064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.104 | $x^{8} + 2 x^{6} + 4 x^{5} + 12 x^{2} + 6$ | $8$ | $1$ | $20$ | $C_4\wr C_2$ | $[2, 2, 3, 7/2]^{2}$ |
| 2.8.20.101 | $x^{8} + 2 x^{6} + 4 x^{5} + 8 x^{3} + 14$ | $8$ | $1$ | $20$ | $C_4\wr C_2$ | $[2, 2, 3, 7/2]^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |