Properties

Label 16.0.93165153442...9584.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 3^{14}\cdot 11^{6}$
Root discriminant $36.36$
Ramified primes $2, 3, 11$
Class number $32$ (GRH)
Class group $[2, 4, 4]$ (GRH)
Galois group $D_4:D_4$ (as 16T141)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![484, -176, 1136, -240, 1196, -40, 592, -192, 310, -120, 184, -32, 14, 0, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 8*x^14 + 14*x^12 - 32*x^11 + 184*x^10 - 120*x^9 + 310*x^8 - 192*x^7 + 592*x^6 - 40*x^5 + 1196*x^4 - 240*x^3 + 1136*x^2 - 176*x + 484)
 
gp: K = bnfinit(x^16 - 4*x^15 + 8*x^14 + 14*x^12 - 32*x^11 + 184*x^10 - 120*x^9 + 310*x^8 - 192*x^7 + 592*x^6 - 40*x^5 + 1196*x^4 - 240*x^3 + 1136*x^2 - 176*x + 484, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 8 x^{14} + 14 x^{12} - 32 x^{11} + 184 x^{10} - 120 x^{9} + 310 x^{8} - 192 x^{7} + 592 x^{6} - 40 x^{5} + 1196 x^{4} - 240 x^{3} + 1136 x^{2} - 176 x + 484 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9316515344280166632259584=2^{40}\cdot 3^{14}\cdot 11^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{22} a^{13} + \frac{3}{22} a^{12} - \frac{1}{11} a^{11} + \frac{3}{22} a^{10} - \frac{1}{11} a^{9} + \frac{2}{11} a^{8} + \frac{5}{11} a^{7} + \frac{1}{11} a^{6} - \frac{4}{11} a^{5} - \frac{1}{11} a^{4} - \frac{5}{11} a^{3} - \frac{2}{11} a^{2} + \frac{2}{11} a$, $\frac{1}{3278} a^{14} - \frac{30}{1639} a^{13} + \frac{361}{1639} a^{12} + \frac{767}{3278} a^{11} + \frac{20}{1639} a^{10} - \frac{144}{1639} a^{9} + \frac{29}{298} a^{8} - \frac{468}{1639} a^{7} + \frac{219}{1639} a^{6} + \frac{592}{1639} a^{5} - \frac{536}{1639} a^{4} + \frac{797}{1639} a^{3} + \frac{293}{1639} a^{2} - \frac{203}{1639} a - \frac{42}{149}$, $\frac{1}{295003939857951346} a^{15} + \frac{15822893897430}{147501969928975673} a^{14} - \frac{1547571785947430}{147501969928975673} a^{13} + \frac{16231300145659320}{147501969928975673} a^{12} - \frac{52467709421887827}{295003939857951346} a^{11} + \frac{66952003602756881}{295003939857951346} a^{10} + \frac{59362982228821221}{295003939857951346} a^{9} - \frac{62980897036018673}{295003939857951346} a^{8} + \frac{57728836313734908}{147501969928975673} a^{7} - \frac{35569562076831918}{147501969928975673} a^{6} - \frac{28236054927097880}{147501969928975673} a^{5} + \frac{19212824139615644}{147501969928975673} a^{4} + \frac{33481539188658419}{147501969928975673} a^{3} + \frac{47311389769836617}{147501969928975673} a^{2} - \frac{10129347805417376}{147501969928975673} a - \frac{6505628542746432}{13409269993543243}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19975.482948 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4:D_4$ (as 16T141):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $D_4:D_4$
Character table for $D_4:D_4$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), 4.4.4752.1, 4.4.76032.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.190768545792.5 x2, 8.0.3052296732672.17 x2, 8.8.5780865024.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$