Normalized defining polynomial
\( x^{16} - 6 x^{15} + 47 x^{14} - 355 x^{13} + 3251 x^{12} - 14666 x^{11} + 85725 x^{10} - 296277 x^{9} + 1374044 x^{8} - 3916271 x^{7} + 12754641 x^{6} - 34075054 x^{5} + 78845290 x^{4} - 169349557 x^{3} + 263496981 x^{2} - 410243094 x + 447723604 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(930715663880146904969790025000000=2^{6}\cdot 5^{8}\cdot 41^{6}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{164} a^{12} - \frac{39}{164} a^{11} - \frac{1}{82} a^{10} - \frac{9}{82} a^{9} + \frac{5}{164} a^{8} - \frac{11}{82} a^{7} - \frac{67}{164} a^{6} + \frac{19}{164} a^{5} + \frac{11}{41} a^{4} + \frac{20}{41} a^{3} + \frac{67}{164} a^{2} + \frac{3}{41} a - \frac{18}{41}$, $\frac{1}{164} a^{13} + \frac{35}{164} a^{11} - \frac{7}{82} a^{10} - \frac{1}{4} a^{9} + \frac{9}{164} a^{8} - \frac{23}{164} a^{7} + \frac{15}{82} a^{6} + \frac{47}{164} a^{5} + \frac{37}{82} a^{4} + \frac{71}{164} a^{3} + \frac{1}{164} a^{2} - \frac{7}{82} a - \frac{5}{41}$, $\frac{1}{164} a^{14} + \frac{39}{164} a^{11} + \frac{29}{164} a^{10} - \frac{17}{164} a^{9} - \frac{17}{82} a^{8} - \frac{5}{41} a^{7} - \frac{17}{41} a^{6} + \frac{65}{164} a^{5} + \frac{7}{164} a^{4} - \frac{11}{164} a^{3} - \frac{63}{164} a^{2} + \frac{13}{41} a + \frac{15}{41}$, $\frac{1}{82755154230985706527264782403701992795182423011945673288} a^{15} - \frac{48769567409179122679310522598636933004081360034115307}{82755154230985706527264782403701992795182423011945673288} a^{14} - \frac{58866833803651600104640840408909504511789840673100519}{20688788557746426631816195600925498198795605752986418322} a^{13} - \frac{226301486288083207604057063039066923506994342458499867}{82755154230985706527264782403701992795182423011945673288} a^{12} - \frac{481196602307367012702768328593089120543151332643606026}{10344394278873213315908097800462749099397802876493209161} a^{11} - \frac{3709324016938195070862823950008303340553404057904164541}{41377577115492853263632391201850996397591211505972836644} a^{10} + \frac{5566547373930696972451668251837727217184101191960798985}{82755154230985706527264782403701992795182423011945673288} a^{9} + \frac{909480216666328849411554161645872051386821470825878062}{10344394278873213315908097800462749099397802876493209161} a^{8} - \frac{12041141496854654900099164093159443453855811134866490721}{41377577115492853263632391201850996397591211505972836644} a^{7} - \frac{36005527834045952470088523562732159880869940367644485981}{82755154230985706527264782403701992795182423011945673288} a^{6} - \frac{5411147701685963389715679066531414666038331574402030511}{20688788557746426631816195600925498198795605752986418322} a^{5} + \frac{4100222415505939284740823382567528476710951765055650771}{41377577115492853263632391201850996397591211505972836644} a^{4} - \frac{5266950433274743110869381187757370071881430002196128103}{41377577115492853263632391201850996397591211505972836644} a^{3} - \frac{1526830058539148130718280026332829266135045888365235545}{82755154230985706527264782403701992795182423011945673288} a^{2} + \frac{7497243006915263088079228396876445791217725907142062425}{41377577115492853263632391201850996397591211505972836644} a + \frac{8015044011014559452847617203829317396006120061119618573}{20688788557746426631816195600925498198795605752986418322}$
Class group and class number
$C_{29}$, which has order $29$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 403164653.505 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{485}) \), 4.0.1025.1, 4.0.9644225.1, \(\Q(\sqrt{5}, \sqrt{97})\), 8.0.93011075850625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||