Normalized defining polynomial
\( x^{16} - x^{15} + 46 x^{14} - 105 x^{13} + 1270 x^{12} - 4449 x^{11} + 16060 x^{10} - 63735 x^{9} + 211046 x^{8} - 1759715 x^{7} + 8594450 x^{6} - 26273899 x^{5} + 43579355 x^{4} - 18892900 x^{3} - 620444 x^{2} - 73814496 x + 155285056 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9260065233133681348183837890625=5^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{3}{16} a^{6} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{32} a^{12} + \frac{1}{64} a^{11} - \frac{1}{64} a^{9} - \frac{1}{16} a^{8} + \frac{15}{64} a^{7} - \frac{3}{32} a^{6} + \frac{11}{64} a^{5} - \frac{11}{64} a^{3} + \frac{5}{16} a^{2} - \frac{5}{16} a - \frac{1}{4}$, $\frac{1}{128} a^{14} - \frac{3}{128} a^{12} - \frac{1}{64} a^{11} - \frac{5}{128} a^{10} + \frac{3}{64} a^{9} - \frac{9}{128} a^{8} + \frac{1}{16} a^{7} - \frac{1}{128} a^{6} - \frac{11}{64} a^{5} + \frac{9}{128} a^{4} + \frac{1}{64} a^{3} + \frac{9}{32} a^{2} + \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{1039736457045233179896183917393199158265972394404033664} a^{15} - \frac{540819804738278868421618111075821198976320335025159}{259934114261308294974045979348299789566493098601008416} a^{14} - \frac{6257900245715157662611975508820172373162475745700303}{1039736457045233179896183917393199158265972394404033664} a^{13} + \frac{13104734695790854405191219094687191478152834653238441}{519868228522616589948091958696599579132986197202016832} a^{12} - \frac{24677953441340788050765043786714080513374928228266041}{1039736457045233179896183917393199158265972394404033664} a^{11} - \frac{10365632404972116483287365459800759076801512766112367}{519868228522616589948091958696599579132986197202016832} a^{10} + \frac{78629727706284299079764066252626350233837007589935203}{1039736457045233179896183917393199158265972394404033664} a^{9} + \frac{15663223276827720655012692906394574994283468929981585}{259934114261308294974045979348299789566493098601008416} a^{8} - \frac{29457312261038230873290172232421887544891191705698133}{1039736457045233179896183917393199158265972394404033664} a^{7} - \frac{4280219760655197772441907314578807242923881417052669}{519868228522616589948091958696599579132986197202016832} a^{6} + \frac{78050844692729992584280296610720463119588536628768781}{1039736457045233179896183917393199158265972394404033664} a^{5} - \frac{46313917347856143690782114511783533652164025383608677}{519868228522616589948091958696599579132986197202016832} a^{4} - \frac{9451952668870356693584022326340785227954264078456335}{129967057130654147487022989674149894783246549300504208} a^{3} - \frac{1737859487444112296377485985160554418324882253606971}{129967057130654147487022989674149894783246549300504208} a^{2} - \frac{2564141386571025291285361065906271934921219584620473}{64983528565327073743511494837074947391623274650252104} a - \frac{1399840310322351655711660183464090787934032499490101}{16245882141331768435877873709268736847905818662563026}$
Class group and class number
$C_{2}\times C_{300}$, which has order $600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10205497.328 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.8405.1, 4.4.1723025.1, 4.0.344605.1, 8.8.3043035529390625.1, 8.0.3043035529390625.1, 8.0.2968815150625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||