Normalized defining polynomial
\( x^{16} - x^{15} + 46 x^{14} - 310 x^{13} + 1475 x^{12} - 10599 x^{11} + 52755 x^{10} - 194525 x^{9} + 964626 x^{8} - 3202300 x^{7} + 6850515 x^{6} - 19834849 x^{5} + 48482750 x^{4} - 22659160 x^{3} + 18758616 x^{2} - 58027856 x + 68181376 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9260065233133681348183837890625=5^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} + \frac{5}{32} a^{6} - \frac{3}{16} a^{5} + \frac{3}{32} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{13} + \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{5}{32} a^{7} - \frac{3}{16} a^{6} + \frac{3}{32} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{14} + \frac{1}{256} a^{13} - \frac{1}{256} a^{12} - \frac{9}{256} a^{11} + \frac{1}{128} a^{10} - \frac{5}{128} a^{9} - \frac{3}{256} a^{8} - \frac{57}{256} a^{7} - \frac{13}{256} a^{6} + \frac{51}{256} a^{5} + \frac{11}{128} a^{4} + \frac{5}{32} a^{3} + \frac{7}{32} a^{2} + \frac{3}{16} a - \frac{1}{2}$, $\frac{1}{64413097790297105681853723198614292063932117326495744} a^{15} + \frac{209543252894598940356803523861240409122312026801}{519460466050783110337530025795276548902678365536256} a^{14} + \frac{460477416510219516215660684653952682168103066925053}{32206548895148552840926861599307146031966058663247872} a^{13} - \frac{4931834151422186941718129760460486917972278229225}{16103274447574276420463430799653573015983029331623936} a^{12} + \frac{1748217697832037964777320341771104141033045331124655}{64413097790297105681853723198614292063932117326495744} a^{11} + \frac{575024126651351134251325478313974322829621281947123}{16103274447574276420463430799653573015983029331623936} a^{10} - \frac{1675507062679322389221519305188173444641612986287185}{64413097790297105681853723198614292063932117326495744} a^{9} + \frac{3771190568902742600103102899848832945807170402930091}{32206548895148552840926861599307146031966058663247872} a^{8} + \frac{840086835729494913495529514247067200015534789415497}{4025818611893569105115857699913393253995757332905984} a^{7} + \frac{1846327548158270559136319389364413631783713083624533}{16103274447574276420463430799653573015983029331623936} a^{6} + \frac{5060289534838380228577030138977479999914610668959447}{64413097790297105681853723198614292063932117326495744} a^{5} - \frac{2143406166781812903124588642299430787161605410869267}{32206548895148552840926861599307146031966058663247872} a^{4} + \frac{229278539975745024314670032318790722317831729673211}{4025818611893569105115857699913393253995757332905984} a^{3} - \frac{78229651765603425183113815312391792755436344686957}{8051637223787138210231715399826786507991514665811968} a^{2} - \frac{1450211137044500083964939965447239242194945508316031}{4025818611893569105115857699913393253995757332905984} a - \frac{48253797974340172715826699535052531780009046645719}{503227326486696138139482212489174156749469666613248}$
Class group and class number
$C_{2}\times C_{300}$, which has order $600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 697029494.906 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.1723025.1, 4.0.8405.1, 4.0.344605.1, 8.8.3043035529390625.2, 8.0.3043035529390625.1, 8.0.2968815150625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||