Normalized defining polynomial
\( x^{16} - 3 x^{15} + 31 x^{14} - 82 x^{13} + 249 x^{12} + 323 x^{11} - 2638 x^{10} + 15109 x^{9} - 36239 x^{8} + 77070 x^{7} + 116867 x^{6} - 524611 x^{5} + 2609089 x^{4} - 6523510 x^{3} + 15629360 x^{2} - 21746376 x + 15698896 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9260065233133681348183837890625=5^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{2480} a^{12} - \frac{33}{620} a^{11} + \frac{21}{1240} a^{10} - \frac{67}{2480} a^{9} + \frac{13}{310} a^{8} + \frac{21}{155} a^{7} - \frac{9}{496} a^{6} - \frac{2}{31} a^{5} - \frac{77}{1240} a^{4} + \frac{67}{496} a^{3} - \frac{3}{124} a^{2} + \frac{8}{155} a - \frac{3}{10}$, $\frac{1}{4960} a^{13} - \frac{1}{4960} a^{12} + \frac{11}{496} a^{11} - \frac{29}{992} a^{10} + \frac{7}{4960} a^{9} + \frac{2}{31} a^{8} - \frac{669}{4960} a^{7} - \frac{219}{992} a^{6} + \frac{603}{2480} a^{5} + \frac{621}{4960} a^{4} + \frac{85}{992} a^{3} - \frac{383}{1240} a^{2} + \frac{143}{620} a - \frac{3}{20}$, $\frac{1}{853120} a^{14} - \frac{21}{853120} a^{13} - \frac{33}{213280} a^{12} + \frac{26039}{853120} a^{11} + \frac{31583}{853120} a^{10} + \frac{24677}{426560} a^{9} - \frac{2507}{27520} a^{8} - \frac{147667}{853120} a^{7} - \frac{25243}{106640} a^{6} - \frac{23739}{853120} a^{5} - \frac{177487}{853120} a^{4} - \frac{61611}{426560} a^{3} + \frac{12889}{53320} a^{2} - \frac{5645}{21328} a - \frac{337}{1720}$, $\frac{1}{39494936236022345290924173597806080} a^{15} + \frac{950347017580644375612522199}{19747468118011172645462086798903040} a^{14} - \frac{176248347401826000457085953127}{7898987247204469058184834719561216} a^{13} - \frac{320032944431132388560659824145}{7898987247204469058184834719561216} a^{12} + \frac{490127416410320484079869752352341}{9873734059005586322731043399451520} a^{11} + \frac{1370612459778587545800718758094151}{39494936236022345290924173597806080} a^{10} + \frac{377046313066889151768371414353561}{39494936236022345290924173597806080} a^{9} + \frac{164788961560637131133441632841659}{3949493623602234529092417359780608} a^{8} - \frac{7764687297390163800474184184736881}{39494936236022345290924173597806080} a^{7} + \frac{1157102702378542739464345307526393}{7898987247204469058184834719561216} a^{6} - \frac{397260227564607119609112789851857}{2468433514751396580682760849862880} a^{5} + \frac{9085574405182898395560705325295741}{39494936236022345290924173597806080} a^{4} + \frac{3229441713682792727984015831632623}{19747468118011172645462086798903040} a^{3} - \frac{38371394924837930093127149996229}{114810861151227747938733062784320} a^{2} - \frac{1614236560267803093143085942430561}{4936867029502793161365521699725760} a + \frac{39015245260033280736581198999213}{79626887572625696151056801608480}$
Class group and class number
$C_{2}\times C_{50}\times C_{50}$, which has order $5000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1050930.24893 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{205}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{41})\), 4.4.1723025.1, 4.4.68921.1, 8.8.2968815150625.1, 8.0.3043035529390625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.8.7.1 | $x^{8} - 41$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.1 | $x^{8} - 41$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |