Normalized defining polynomial
\( x^{16} + 23 x^{14} + 276 x^{12} + 2818 x^{10} + 20250 x^{8} + 86927 x^{6} + 243976 x^{4} + 501552 x^{2} + 531441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92475143538754579453515625=5^{8}\cdot 109^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{30} a^{8} - \frac{1}{6} a^{6} + \frac{7}{30} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{5}$, $\frac{1}{30} a^{9} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{11}{30} a - \frac{1}{2}$, $\frac{1}{60} a^{10} - \frac{1}{20} a^{6} - \frac{1}{2} a^{3} - \frac{19}{60} a^{2} + \frac{1}{4}$, $\frac{1}{120} a^{11} - \frac{1}{120} a^{10} - \frac{1}{60} a^{9} - \frac{1}{60} a^{8} + \frac{7}{120} a^{7} + \frac{13}{120} a^{6} - \frac{7}{60} a^{5} + \frac{23}{60} a^{4} - \frac{13}{40} a^{3} + \frac{59}{120} a^{2} + \frac{1}{40} a + \frac{11}{40}$, $\frac{1}{4800} a^{12} - \frac{11}{4800} a^{10} + \frac{61}{4800} a^{8} + \frac{823}{4800} a^{6} - \frac{687}{1600} a^{4} + \frac{309}{800} a^{2} + \frac{423}{1600}$, $\frac{1}{86400} a^{13} - \frac{1}{9600} a^{12} + \frac{149}{86400} a^{11} + \frac{11}{9600} a^{10} - \frac{193}{28800} a^{9} - \frac{61}{9600} a^{8} + \frac{343}{86400} a^{7} - \frac{823}{9600} a^{6} + \frac{1051}{9600} a^{5} - \frac{913}{3200} a^{4} + \frac{9007}{43200} a^{3} - \frac{309}{1600} a^{2} + \frac{39829}{86400} a + \frac{1177}{3200}$, $\frac{1}{19889452800} a^{14} - \frac{128939}{2486181600} a^{12} + \frac{8681441}{1657454400} a^{10} - \frac{62169169}{9944726400} a^{8} + \frac{4153997}{30693600} a^{6} - \frac{1165847237}{3977890560} a^{4} - \frac{1}{2} a^{3} + \frac{480470147}{3977890560} a^{2} - \frac{1}{2} a - \frac{8588761}{27283200}$, $\frac{1}{1074030451200} a^{15} - \frac{1}{39778905600} a^{14} - \frac{128939}{134253806400} a^{13} + \frac{128939}{4972363200} a^{12} + \frac{174426881}{89502537600} a^{11} - \frac{8681441}{3314908800} a^{10} + \frac{2258266991}{537015225600} a^{9} - \frac{269321711}{19889452800} a^{8} + \frac{35870717}{1657454400} a^{7} - \frac{14385197}{61387200} a^{6} + \frac{19253990971}{214806090240} a^{5} + \frac{2226618053}{7955781120} a^{4} - \frac{91276205437}{214806090240} a^{3} + \frac{182511613}{7955781120} a^{2} - \frac{11317081}{1473292800} a + \frac{3132121}{54566400}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6889381.56239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{109}) \), \(\Q(\sqrt{545}) \), 4.0.2725.1 x2, 4.0.59405.1 x2, \(\Q(\sqrt{5}, \sqrt{109})\), 8.4.9616399718125.1 x2, 8.0.88223850625.1, 8.0.88223850625.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109 | Data not computed | ||||||