Normalized defining polynomial
\( x^{16} - 4 x^{15} - 7 x^{14} + 61 x^{13} - 32 x^{12} - 315 x^{11} + 492 x^{10} + 479 x^{9} - 1876 x^{8} + 1049 x^{7} + 2612 x^{6} - 2639 x^{5} - 461 x^{4} - 5376 x^{3} + 5666 x^{2} + 2330 x + 3949 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(924202605744142035432593=17^{7}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{121} a^{14} - \frac{16}{121} a^{13} + \frac{5}{11} a^{12} + \frac{29}{121} a^{11} - \frac{28}{121} a^{10} + \frac{2}{121} a^{9} - \frac{6}{121} a^{8} + \frac{49}{121} a^{7} + \frac{10}{121} a^{6} + \frac{4}{121} a^{5} + \frac{54}{121} a^{4} - \frac{56}{121} a^{3} - \frac{3}{11} a^{2} + \frac{1}{121} a + \frac{2}{11}$, $\frac{1}{189773862245392752300773107} a^{15} + \frac{487805653430186404236389}{189773862245392752300773107} a^{14} + \frac{11529280911451671308951966}{189773862245392752300773107} a^{13} + \frac{90416235661550341091449644}{189773862245392752300773107} a^{12} - \frac{34541021128727740509698671}{189773862245392752300773107} a^{11} + \frac{44656517498460590230416802}{189773862245392752300773107} a^{10} - \frac{11136085251492859004539294}{27110551749341821757253301} a^{9} - \frac{38186039878731126186114986}{189773862245392752300773107} a^{8} - \frac{388144857966399873768437}{17252169295035704754615737} a^{7} + \frac{46398461510405788066242647}{189773862245392752300773107} a^{6} + \frac{22156011349898569612188359}{189773862245392752300773107} a^{5} + \frac{69103760006823765767592478}{189773862245392752300773107} a^{4} + \frac{45102228229169250827422550}{189773862245392752300773107} a^{3} + \frac{63917658460032539368018033}{189773862245392752300773107} a^{2} + \frac{1663836527937566359089202}{27110551749341821757253301} a + \frac{6017392040481336473383619}{17252169295035704754615737}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110152.755114 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 4.0.117113.1, 8.0.233162731073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 17.8.7.6 | $x^{8} + 37179$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 83 | Data not computed | ||||||