Normalized defining polynomial
\( x^{16} + 36 x^{14} + 854 x^{12} - 24 x^{11} + 14660 x^{10} + 1512 x^{9} + 185223 x^{8} + 22368 x^{7} + 1694252 x^{6} + 74400 x^{5} + 10592826 x^{4} - 847320 x^{3} + 41438996 x^{2} - 6189912 x + 74638654 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(923833726039318399509778661376=2^{48}\cdot 3^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1392=2^{4}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1392}(1,·)$, $\chi_{1392}(1217,·)$, $\chi_{1392}(521,·)$, $\chi_{1392}(407,·)$, $\chi_{1392}(1103,·)$, $\chi_{1392}(1045,·)$, $\chi_{1392}(755,·)$, $\chi_{1392}(463,·)$, $\chi_{1392}(349,·)$, $\chi_{1392}(869,·)$, $\chi_{1392}(811,·)$, $\chi_{1392}(173,·)$, $\chi_{1392}(115,·)$, $\chi_{1392}(697,·)$, $\chi_{1392}(59,·)$, $\chi_{1392}(1159,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{384440777} a^{14} - \frac{35932045}{384440777} a^{13} - \frac{157164951}{384440777} a^{12} + \frac{18681074}{384440777} a^{11} - \frac{72154252}{384440777} a^{10} - \frac{163010311}{384440777} a^{9} - \frac{1517673}{54920111} a^{8} + \frac{5842180}{384440777} a^{7} - \frac{169179030}{384440777} a^{6} + \frac{4917854}{384440777} a^{5} + \frac{85209917}{384440777} a^{4} + \frac{2710114}{8179591} a^{3} - \frac{50329648}{384440777} a^{2} - \frac{3184541}{8179591} a + \frac{73152364}{384440777}$, $\frac{1}{304500876217272726269924910211276889} a^{15} - \frac{30296684103446779763731893}{43500125173896103752846415744468127} a^{14} + \frac{90909807180869837601110082921374591}{304500876217272726269924910211276889} a^{13} - \frac{7850620330357650094532539405398640}{304500876217272726269924910211276889} a^{12} - \frac{23245587411471210979173540696630043}{304500876217272726269924910211276889} a^{11} - \frac{122638610996399362084067667006961920}{304500876217272726269924910211276889} a^{10} - \frac{92474428427029347905449581062702261}{304500876217272726269924910211276889} a^{9} - \frac{120351049185048343132605186216719736}{304500876217272726269924910211276889} a^{8} + \frac{120944632092848064843123392778624012}{304500876217272726269924910211276889} a^{7} + \frac{6042417534020174092122661781884828}{17911816248074866251172053541839817} a^{6} - \frac{65084497458573236885462981976584400}{304500876217272726269924910211276889} a^{5} + \frac{106386854498764388620765321890583939}{304500876217272726269924910211276889} a^{4} - \frac{1895897207567112036753394712870845}{17911816248074866251172053541839817} a^{3} + \frac{126993886462559827320068333217786236}{304500876217272726269924910211276889} a^{2} - \frac{3993183055761293290869905108539071}{13239168531185770707388039574403343} a - \frac{76797412859126772838511462960157570}{304500876217272726269924910211276889}$
Class group and class number
$C_{3}\times C_{3}\times C_{5304}$, which has order $47736$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |