Normalized defining polynomial
\( x^{16} - 3 x^{15} + 17 x^{14} - 46 x^{13} + 131 x^{12} - 142 x^{11} + 513 x^{10} + 835 x^{9} - 655 x^{8} + 3719 x^{7} - 4558 x^{6} - 17144 x^{5} + 72849 x^{4} - 221070 x^{3} + 508254 x^{2} - 674471 x + 1152731 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(922838846045156494140625=5^{12}\cdot 7841^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7841$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31447} a^{14} - \frac{14346}{31447} a^{13} + \frac{325}{2419} a^{12} + \frac{1764}{31447} a^{11} + \frac{3332}{31447} a^{10} + \frac{2024}{31447} a^{9} - \frac{12729}{31447} a^{8} - \frac{6257}{31447} a^{7} - \frac{14732}{31447} a^{6} + \frac{11386}{31447} a^{5} - \frac{15153}{31447} a^{4} + \frac{224}{533} a^{3} + \frac{285}{2419} a^{2} - \frac{5825}{31447} a + \frac{2181}{31447}$, $\frac{1}{229982534102130884870915800409733624113} a^{15} + \frac{1726442425147594368717154460879624}{229982534102130884870915800409733624113} a^{14} + \frac{56215106714459571577592279218724445514}{229982534102130884870915800409733624113} a^{13} + \frac{5192879785739451322199963898673235787}{229982534102130884870915800409733624113} a^{12} - \frac{102921891533347173723057066915317398126}{229982534102130884870915800409733624113} a^{11} + \frac{103608400534955562740681457996866115512}{229982534102130884870915800409733624113} a^{10} - \frac{74386076489635441622491504431015164239}{229982534102130884870915800409733624113} a^{9} + \frac{17893120342002507565188300787979565823}{229982534102130884870915800409733624113} a^{8} - \frac{1646698400294379990956818066382025561}{229982534102130884870915800409733624113} a^{7} + \frac{38739487042468694129964058081249160047}{229982534102130884870915800409733624113} a^{6} - \frac{77812691210199382928618250194557102057}{229982534102130884870915800409733624113} a^{5} + \frac{78367261890663471613455348275795692436}{229982534102130884870915800409733624113} a^{4} + \frac{5032961473776254799741615260805320631}{229982534102130884870915800409733624113} a^{3} + \frac{70877497238920568040218061401904872577}{229982534102130884870915800409733624113} a^{2} - \frac{59008618781038868314900326817632209860}{229982534102130884870915800409733624113} a - \frac{22871932184656517322545478217326433479}{229982534102130884870915800409733624113}$
Class group and class number
$C_{16}$, which has order $16$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11170.9327013 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t16n1496 |
| Character table for t16n1496 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.980125.1, 8.0.4900625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7841 | Data not computed | ||||||