Properties

Label 16.0.92170395205...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}$
Root discriminant $36.33$
Ramified primes $2, 3, 5, 11$
Class number $24$ (GRH)
Class group $[2, 12]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17191, -6304, 2902, 9920, -5062, -24820, 60630, -68176, 50171, -28604, 12774, -4544, 1364, -308, 64, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 64*x^14 - 308*x^13 + 1364*x^12 - 4544*x^11 + 12774*x^10 - 28604*x^9 + 50171*x^8 - 68176*x^7 + 60630*x^6 - 24820*x^5 - 5062*x^4 + 9920*x^3 + 2902*x^2 - 6304*x + 17191)
 
gp: K = bnfinit(x^16 - 8*x^15 + 64*x^14 - 308*x^13 + 1364*x^12 - 4544*x^11 + 12774*x^10 - 28604*x^9 + 50171*x^8 - 68176*x^7 + 60630*x^6 - 24820*x^5 - 5062*x^4 + 9920*x^3 + 2902*x^2 - 6304*x + 17191, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 64 x^{14} - 308 x^{13} + 1364 x^{12} - 4544 x^{11} + 12774 x^{10} - 28604 x^{9} + 50171 x^{8} - 68176 x^{7} + 60630 x^{6} - 24820 x^{5} - 5062 x^{4} + 9920 x^{3} + 2902 x^{2} - 6304 x + 17191 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9217039520504217600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1320=2^{3}\cdot 3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(901,·)$, $\chi_{1320}(769,·)$, $\chi_{1320}(329,·)$, $\chi_{1320}(461,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(661,·)$, $\chi_{1320}(89,·)$, $\chi_{1320}(989,·)$, $\chi_{1320}(1121,·)$, $\chi_{1320}(1189,·)$, $\chi_{1320}(881,·)$, $\chi_{1320}(109,·)$, $\chi_{1320}(221,·)$, $\chi_{1320}(241,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{192} a^{12} - \frac{1}{32} a^{11} + \frac{17}{192} a^{10} + \frac{3}{32} a^{9} - \frac{1}{32} a^{8} + \frac{7}{32} a^{7} + \frac{1}{192} a^{6} - \frac{3}{32} a^{5} - \frac{5}{32} a^{4} - \frac{15}{32} a^{3} + \frac{89}{192} a^{2} + \frac{5}{32} a + \frac{25}{192}$, $\frac{1}{192} a^{13} - \frac{19}{192} a^{11} - \frac{1}{8} a^{10} + \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{35}{192} a^{7} + \frac{3}{16} a^{6} - \frac{7}{32} a^{5} + \frac{3}{32} a^{4} - \frac{67}{192} a^{3} - \frac{5}{16} a^{2} + \frac{13}{192} a + \frac{9}{32}$, $\frac{1}{9414450252096} a^{14} - \frac{7}{9414450252096} a^{13} - \frac{893525525}{1569075042016} a^{12} + \frac{32166918991}{9414450252096} a^{11} - \frac{828727392877}{9414450252096} a^{10} - \frac{143075264319}{1569075042016} a^{9} + \frac{694488039733}{9414450252096} a^{8} - \frac{1980631660309}{9414450252096} a^{7} + \frac{837903259279}{9414450252096} a^{6} - \frac{158833212435}{1569075042016} a^{5} + \frac{1721734325993}{9414450252096} a^{4} + \frac{81560324791}{9414450252096} a^{3} - \frac{155936636923}{1569075042016} a^{2} + \frac{2193938019617}{9414450252096} a - \frac{2505273358637}{9414450252096}$, $\frac{1}{299840826079005504} a^{15} + \frac{15917}{299840826079005504} a^{14} + \frac{570500517293387}{299840826079005504} a^{13} + \frac{27637594108769}{74960206519751376} a^{12} + \frac{865496307741643}{49973471013167584} a^{11} + \frac{14343038782490759}{299840826079005504} a^{10} + \frac{10056302875508629}{299840826079005504} a^{9} + \frac{33607008879380927}{299840826079005504} a^{8} + \frac{2596673914448925}{49973471013167584} a^{7} + \frac{21465263229166459}{299840826079005504} a^{6} - \frac{35619082646412379}{299840826079005504} a^{5} - \frac{3334734377893505}{299840826079005504} a^{4} + \frac{100203348492942457}{299840826079005504} a^{3} + \frac{332387211371857}{3656595439987872} a^{2} + \frac{7955459650390341}{49973471013167584} a + \frac{51567656404152367}{299840826079005504}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{32239}{1235167968} a^{14} - \frac{225673}{1235167968} a^{13} + \frac{3525053}{2470335936} a^{12} - \frac{3820705}{617583984} a^{11} + \frac{63894299}{2470335936} a^{10} - \frac{31689343}{411722656} a^{9} + \frac{28561709}{154395996} a^{8} - \frac{209200835}{617583984} a^{7} + \frac{856775731}{2470335936} a^{6} - \frac{48556445}{411722656} a^{5} - \frac{108219545}{154395996} a^{4} + \frac{409789387}{308791992} a^{3} - \frac{1407524915}{2470335936} a^{2} - \frac{46628033}{617583984} a + \frac{1900176307}{2470335936} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 405538.035702 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{66}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{330}) \), \(\Q(\sqrt{2}, \sqrt{33})\), \(\Q(\sqrt{-3}, \sqrt{-22})\), \(\Q(\sqrt{-6}, \sqrt{-11})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\sqrt{-6}, \sqrt{-22})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{-11})\), \(\Q(\sqrt{-30}, \sqrt{-55})\), \(\Q(\sqrt{-15}, \sqrt{66})\), \(\Q(\sqrt{10}, \sqrt{66})\), \(\Q(\sqrt{5}, \sqrt{66})\), \(\Q(\sqrt{-15}, \sqrt{33})\), \(\Q(\sqrt{-30}, \sqrt{33})\), \(\Q(\sqrt{5}, \sqrt{33})\), \(\Q(\sqrt{10}, \sqrt{33})\), \(\Q(\sqrt{2}, \sqrt{-55})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{2}, \sqrt{165})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-55})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-110})\), \(\Q(\sqrt{10}, \sqrt{-22})\), \(\Q(\sqrt{-22}, \sqrt{-30})\), \(\Q(\sqrt{-15}, \sqrt{-22})\), \(\Q(\sqrt{5}, \sqrt{-22})\), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{-30})\), \(\Q(\sqrt{-11}, \sqrt{-15})\), \(\Q(\sqrt{10}, \sqrt{-11})\), \(\Q(\sqrt{-6}, \sqrt{-55})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{10})\), \(\Q(\sqrt{-6}, \sqrt{-110})\), 8.0.4857532416.1, 8.0.3035957760000.7, 8.8.3035957760000.2, 8.0.3035957760000.11, 8.0.3035957760000.19, 8.0.3035957760000.8, 8.0.3035957760000.5, 8.0.741200625.1, 8.0.3035957760000.14, 8.0.3035957760000.1, 8.0.3035957760000.9, 8.0.3035957760000.17, 8.0.207360000.1, 8.0.37480960000.9, 8.0.3035957760000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$