Properties

Label 16.0.92170395205...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}$
Root discriminant $36.33$
Ramified primes $2, 3, 5, 11$
Class number $16$ (GRH)
Class group $[4, 4]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3481, -10148, 11176, -17792, 32489, -26060, 16428, -22724, 14222, 632, -1206, -880, 383, 32, -14, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 14*x^14 + 32*x^13 + 383*x^12 - 880*x^11 - 1206*x^10 + 632*x^9 + 14222*x^8 - 22724*x^7 + 16428*x^6 - 26060*x^5 + 32489*x^4 - 17792*x^3 + 11176*x^2 - 10148*x + 3481)
 
gp: K = bnfinit(x^16 - 4*x^15 - 14*x^14 + 32*x^13 + 383*x^12 - 880*x^11 - 1206*x^10 + 632*x^9 + 14222*x^8 - 22724*x^7 + 16428*x^6 - 26060*x^5 + 32489*x^4 - 17792*x^3 + 11176*x^2 - 10148*x + 3481, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 14 x^{14} + 32 x^{13} + 383 x^{12} - 880 x^{11} - 1206 x^{10} + 632 x^{9} + 14222 x^{8} - 22724 x^{7} + 16428 x^{6} - 26060 x^{5} + 32489 x^{4} - 17792 x^{3} + 11176 x^{2} - 10148 x + 3481 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9217039520504217600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1320=2^{3}\cdot 3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(1099,·)$, $\chi_{1320}(571,·)$, $\chi_{1320}(769,·)$, $\chi_{1320}(329,·)$, $\chi_{1320}(331,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(131,·)$, $\chi_{1320}(89,·)$, $\chi_{1320}(859,·)$, $\chi_{1320}(1121,·)$, $\chi_{1320}(419,·)$, $\chi_{1320}(881,·)$, $\chi_{1320}(241,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(1211,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{36} a^{12} + \frac{1}{6} a^{11} - \frac{1}{9} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{18} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{5}{18} a^{2} - \frac{1}{2} a + \frac{1}{36}$, $\frac{1}{36} a^{13} - \frac{1}{9} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{18} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{5}{18} a^{3} + \frac{1}{6} a^{2} + \frac{1}{36} a - \frac{1}{6}$, $\frac{1}{1194480} a^{14} - \frac{1009}{597240} a^{13} - \frac{13841}{1194480} a^{12} - \frac{16843}{298620} a^{11} + \frac{1681}{17064} a^{10} + \frac{4241}{24885} a^{9} + \frac{1847}{21330} a^{8} + \frac{7912}{74655} a^{7} + \frac{73783}{597240} a^{6} + \frac{1576}{8295} a^{5} - \frac{252491}{597240} a^{4} + \frac{48949}{149310} a^{3} + \frac{426539}{1194480} a^{2} + \frac{30701}{85320} a + \frac{68039}{1194480}$, $\frac{1}{47468175645843180804240} a^{15} + \frac{312750953089579}{2063833723732312208880} a^{14} + \frac{178885487778358960829}{47468175645843180804240} a^{13} + \frac{66621971513508106397}{5274241738427020089360} a^{12} - \frac{342816880332890205269}{1582272521528106026808} a^{11} + \frac{4538093959832940883709}{23734087822921590402120} a^{10} + \frac{2749942425210549007}{2966760977865198800265} a^{9} - \frac{261763363424063343883}{2966760977865198800265} a^{8} - \frac{1081485533668312920319}{7911362607640530134040} a^{7} - \frac{1095287910307891252823}{23734087822921590402120} a^{6} + \frac{1645356061646953602889}{23734087822921590402120} a^{5} - \frac{2269268836804947265369}{23734087822921590402120} a^{4} + \frac{21083776428408705587179}{47468175645843180804240} a^{3} + \frac{2879871980637051753473}{15822725215281060268080} a^{2} + \frac{4828924776851855530783}{15822725215281060268080} a - \frac{1611806055640779169}{160909069985909087472}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1230726535186378519}{66762553650974937840} a^{15} - \frac{41741350245851519}{725679930988858020} a^{14} - \frac{20594687006840131651}{66762553650974937840} a^{13} + \frac{3538327536004466983}{11127092275162489640} a^{12} + \frac{11661855650419439661}{1589584610737498520} a^{11} - \frac{163014224502219661217}{16690638412743734460} a^{10} - \frac{3665002685859881095}{119218845805312389} a^{9} - \frac{129005516573570575343}{8345319206371867230} a^{8} + \frac{2761920042334765433347}{11127092275162489640} a^{7} - \frac{670723546173990555905}{3338127682548746892} a^{6} + \frac{4291731527410703555779}{33381276825487468920} a^{5} - \frac{1229486976486575721421}{3338127682548746892} a^{4} + \frac{18454861571333380896229}{66762553650974937840} a^{3} - \frac{17577240972226830333}{198698076342187315} a^{2} + \frac{2899518249900871072919}{22254184550324979280} a - \frac{5930341390079199469}{80826336139194840} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 381719.802089 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-66}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{110}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-2}, \sqrt{33})\), \(\Q(\sqrt{-3}, \sqrt{22})\), \(\Q(\sqrt{6}, \sqrt{-11})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{-11})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\sqrt{6}, \sqrt{22})\), \(\Q(\sqrt{5}, \sqrt{-66})\), \(\Q(\sqrt{-10}, \sqrt{-66})\), \(\Q(\sqrt{-15}, \sqrt{-66})\), \(\Q(\sqrt{30}, \sqrt{-55})\), \(\Q(\sqrt{-2}, \sqrt{165})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-55})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{-10}, \sqrt{33})\), \(\Q(\sqrt{5}, \sqrt{33})\), \(\Q(\sqrt{30}, \sqrt{33})\), \(\Q(\sqrt{-15}, \sqrt{33})\), \(\Q(\sqrt{-3}, \sqrt{110})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-55})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), \(\Q(\sqrt{-15}, \sqrt{22})\), \(\Q(\sqrt{5}, \sqrt{22})\), \(\Q(\sqrt{22}, \sqrt{30})\), \(\Q(\sqrt{-10}, \sqrt{22})\), \(\Q(\sqrt{6}, \sqrt{-55})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{110})\), \(\Q(\sqrt{6}, \sqrt{-10})\), \(\Q(\sqrt{-11}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{-15})\), \(\Q(\sqrt{-10}, \sqrt{-11})\), 8.0.4857532416.2, 8.0.3035957760000.15, 8.0.3035957760000.10, 8.0.3035957760000.20, 8.0.3035957760000.12, 8.0.3035957760000.13, 8.0.3035957760000.2, 8.0.3035957760000.18, 8.0.207360000.2, 8.0.3035957760000.4, 8.0.37480960000.2, 8.0.3035957760000.16, 8.0.741200625.1, 8.0.3035957760000.3, 8.8.3035957760000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$