Normalized defining polynomial
\( x^{16} - 4 x^{15} - 40 x^{13} + 132 x^{12} + 584 x^{11} - 1202 x^{10} - 3900 x^{9} + 8925 x^{8} + 5144 x^{7} - 40238 x^{6} + 15732 x^{5} + 140344 x^{4} - 72900 x^{3} - 138942 x^{2} + 161516 x + 162641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9177836710508849627398144=2^{32}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{24} a^{12} - \frac{1}{4} a^{11} - \frac{1}{24} a^{10} + \frac{1}{12} a^{9} + \frac{1}{12} a^{8} + \frac{5}{12} a^{7} + \frac{1}{8} a^{6} + \frac{1}{12} a^{5} - \frac{1}{3} a^{4} + \frac{1}{4} a^{3} + \frac{5}{24} a^{2} - \frac{1}{12} a - \frac{1}{24}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{8} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{4} a^{4} + \frac{5}{24} a^{3} + \frac{1}{6} a^{2} - \frac{1}{24} a - \frac{1}{4}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{13} - \frac{3}{16} a^{11} - \frac{7}{48} a^{10} - \frac{1}{24} a^{9} - \frac{5}{48} a^{8} + \frac{1}{16} a^{7} + \frac{11}{48} a^{6} + \frac{1}{3} a^{5} - \frac{7}{16} a^{4} + \frac{5}{48} a^{3} + \frac{1}{4} a^{2} + \frac{17}{48} a + \frac{17}{48}$, $\frac{1}{81825879992095417851529921947228528} a^{15} - \frac{79814223502703468830721320149575}{40912939996047708925764960973614264} a^{14} + \frac{273832145966483884930457666915805}{27275293330698472617176640649076176} a^{13} + \frac{60067712230254293485861119406105}{81825879992095417851529921947228528} a^{12} + \frac{602156729437712278559238658142288}{5114117499505963615720620121701783} a^{11} + \frac{4501748941726765477011025008940237}{27275293330698472617176640649076176} a^{10} - \frac{588961895043358795223786836741561}{27275293330698472617176640649076176} a^{9} - \frac{2105969420999930660997670071743887}{20456469998023854462882480486807132} a^{8} + \frac{1786252486118721972604030677007701}{13637646665349236308588320324538088} a^{7} + \frac{12947255448560302373145795364541047}{81825879992095417851529921947228528} a^{6} + \frac{1488881820378569417301373266103991}{81825879992095417851529921947228528} a^{5} - \frac{915114433908173257608657381140933}{13637646665349236308588320324538088} a^{4} - \frac{12135805127280586411159092067205253}{27275293330698472617176640649076176} a^{3} - \frac{8896852272647348636896655960636273}{81825879992095417851529921947228528} a^{2} + \frac{978243512350963626329970451064845}{13637646665349236308588320324538088} a - \frac{10981902357340212366352583941369627}{81825879992095417851529921947228528}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2974492304440059194155421}{248448085283941052781647139036} a^{15} - \frac{21677032949838560727539283}{331264113711921403708862852048} a^{14} + \frac{27198357424197401927130543}{331264113711921403708862852048} a^{13} - \frac{90661884276158397104923015}{165632056855960701854431426024} a^{12} + \frac{2382164314220817554368141013}{993792341135764211126588556144} a^{11} + \frac{4233466562100193936984784497}{993792341135764211126588556144} a^{10} - \frac{11304126469439559788186771195}{496896170567882105563294278072} a^{9} - \frac{21250250177299706368949263583}{993792341135764211126588556144} a^{8} + \frac{139786344512064126290363793985}{993792341135764211126588556144} a^{7} - \frac{78632020356021386650844885897}{993792341135764211126588556144} a^{6} - \frac{24607573121324748267750451937}{62112021320985263195411784759} a^{5} + \frac{645176777196702314034366286021}{993792341135764211126588556144} a^{4} + \frac{942396896679922924218445234211}{993792341135764211126588556144} a^{3} - \frac{305319732900245075399451671617}{165632056855960701854431426024} a^{2} - \frac{156916077882318414707170407279}{331264113711921403708862852048} a + \frac{1869430559056418573742730200457}{993792341135764211126588556144} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 689983.703803 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||