Normalized defining polynomial
\( x^{16} - 4 x^{15} - 26 x^{14} + 184 x^{13} + 396 x^{12} - 2848 x^{11} + 2946 x^{10} + 17832 x^{9} - 47271 x^{8} - 15272 x^{7} + 220534 x^{6} - 233928 x^{5} - 214944 x^{4} + 709236 x^{3} - 220724 x^{2} - 560472 x + 738433 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9177836710508849627398144=2^{32}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4264} a^{14} - \frac{17}{328} a^{13} - \frac{29}{533} a^{12} + \frac{439}{4264} a^{11} + \frac{11}{4264} a^{10} + \frac{81}{533} a^{9} + \frac{919}{4264} a^{8} + \frac{353}{4264} a^{7} - \frac{1693}{4264} a^{6} + \frac{745}{2132} a^{5} + \frac{93}{4264} a^{4} + \frac{1981}{4264} a^{3} - \frac{98}{533} a^{2} + \frac{1341}{4264} a - \frac{1167}{4264}$, $\frac{1}{6650362646288274814037468005452399906803896} a^{15} - \frac{482190216017459392504060697833738087635}{6650362646288274814037468005452399906803896} a^{14} + \frac{96378369109256822972149695768193064542509}{3325181323144137407018734002726199953401948} a^{13} + \frac{815852100972764605135166675861348096699539}{6650362646288274814037468005452399906803896} a^{12} - \frac{1065538387231231232735755898721953729514323}{6650362646288274814037468005452399906803896} a^{11} - \frac{587361761971051910448489682363756895031959}{3325181323144137407018734002726199953401948} a^{10} - \frac{1584000883073816500577694322582986209986953}{6650362646288274814037468005452399906803896} a^{9} - \frac{464539401184951176150565000423686985348709}{6650362646288274814037468005452399906803896} a^{8} + \frac{625451027998577474371192600289127481816761}{6650362646288274814037468005452399906803896} a^{7} + \frac{771658173251753455578635736093148203729531}{1662590661572068703509367001363099976700974} a^{6} - \frac{1477177910299768483561001492801241446412615}{6650362646288274814037468005452399906803896} a^{5} - \frac{1199776710349569938116875250285031592053149}{6650362646288274814037468005452399906803896} a^{4} - \frac{8043480544778910754988396527584087422093}{255783178703395185155287230978938457953996} a^{3} + \frac{2178317055669411852369867636106752906669889}{6650362646288274814037468005452399906803896} a^{2} - \frac{836164090744456680296277364980102843272793}{6650362646288274814037468005452399906803896} a + \frac{432573129076417403007128079333176973588365}{3325181323144137407018734002726199953401948}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{34049765162642203151767238291953}{8209827610784378246300492939874501304} a^{15} - \frac{16552193353575656111923199494068}{1026228451348047280787561617484312663} a^{14} - \frac{982668775276978736841301645245219}{8209827610784378246300492939874501304} a^{13} + \frac{6345553255048271294321927125437201}{8209827610784378246300492939874501304} a^{12} + \frac{2096867282289681955511202005129602}{1026228451348047280787561617484312663} a^{11} - \frac{106142556230230568281799469073023955}{8209827610784378246300492939874501304} a^{10} + \frac{33467505973671132599474510804006443}{8209827610784378246300492939874501304} a^{9} + \frac{191691701351249718992656131572863261}{2052456902696094561575123234968625326} a^{8} - \frac{714092715684790381323614048082384825}{4104913805392189123150246469937250652} a^{7} - \frac{2175006049085530196299974753707169653}{8209827610784378246300492939874501304} a^{6} + \frac{658801576939763326905108082361944995}{631525200829567557407730226144192408} a^{5} - \frac{835365096111486263678981961394955855}{4104913805392189123150246469937250652} a^{4} - \frac{18371514118245672199539431916727393585}{8209827610784378246300492939874501304} a^{3} + \frac{17954763454695034103227548012199938743}{8209827610784378246300492939874501304} a^{2} + \frac{1898845065653549822246997245662809432}{1026228451348047280787561617484312663} a - \frac{732768755368747522238524565294970253}{200239697824009225519524218045719544} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 829553.598725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 97 | Data not computed | ||||||