Normalized defining polynomial
\( x^{16} - 4 x^{15} + 44 x^{13} - 228 x^{12} + 380 x^{11} + 950 x^{10} - 3616 x^{9} + 869 x^{8} - 988 x^{7} + 35626 x^{6} - 28944 x^{5} - 113236 x^{4} - 132104 x^{3} + 1265966 x^{2} - 1918932 x + 932249 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9177836710508849627398144=2^{32}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{42} a^{12} - \frac{1}{7} a^{11} - \frac{2}{21} a^{10} - \frac{4}{21} a^{9} + \frac{1}{42} a^{8} + \frac{1}{3} a^{7} + \frac{5}{21} a^{6} + \frac{2}{7} a^{5} + \frac{1}{14} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{4}{21}$, $\frac{1}{42} a^{13} + \frac{1}{21} a^{11} + \frac{5}{21} a^{10} - \frac{5}{42} a^{9} - \frac{1}{42} a^{8} + \frac{5}{21} a^{7} - \frac{2}{7} a^{6} - \frac{3}{14} a^{5} + \frac{3}{14} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{21} a - \frac{5}{14}$, $\frac{1}{294} a^{14} - \frac{1}{294} a^{13} - \frac{1}{294} a^{11} + \frac{5}{42} a^{10} - \frac{11}{147} a^{9} - \frac{9}{49} a^{8} - \frac{29}{294} a^{7} - \frac{101}{294} a^{6} - \frac{22}{49} a^{5} + \frac{3}{49} a^{4} + \frac{3}{98} a^{3} + \frac{1}{21} a^{2} + \frac{13}{294} a + \frac{10}{147}$, $\frac{1}{318635642633886601430844046974} a^{15} - \frac{227785400474371412478636781}{318635642633886601430844046974} a^{14} - \frac{826687740316320492087848289}{106211880877962200476948015658} a^{13} - \frac{1190937299394852968437436441}{318635642633886601430844046974} a^{12} - \frac{2730509918030996757629548195}{24510434048760507802372618998} a^{11} + \frac{7346007180547996898233228927}{53105940438981100238474007829} a^{10} - \frac{8275949434606482703950824779}{45519377519126657347263435282} a^{9} + \frac{5213027177624800931706210217}{106211880877962200476948015658} a^{8} - \frac{69943726062266039657339647063}{318635642633886601430844046974} a^{7} - \frac{26962259659274956048006037405}{159317821316943300715422023487} a^{6} - \frac{52304095480443457772720143375}{106211880877962200476948015658} a^{5} - \frac{1338870154567052922405088177}{8170144682920169267457539666} a^{4} + \frac{3204220362606036227681503936}{159317821316943300715422023487} a^{3} + \frac{136153403445391188962746455415}{318635642633886601430844046974} a^{2} - \frac{30078957397244891373901610477}{159317821316943300715422023487} a - \frac{16096234646222322663818343787}{159317821316943300715422023487}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2037875026721379917659270}{683767473463275968735716839} a^{15} + \frac{3232074342545189168940047}{455844982308850645823811226} a^{14} + \frac{16096822027035810364225315}{1367534946926551937471433678} a^{13} - \frac{25551793945325031495365871}{227922491154425322911905613} a^{12} + \frac{52236080356627154823421493}{105194995917427072113187206} a^{11} - \frac{218740393848844658906717402}{683767473463275968735716839} a^{10} - \frac{660179078106392407198047673}{195362135275221705353061954} a^{9} + \frac{1199783908318196417286170033}{227922491154425322911905613} a^{8} + \frac{2818441012038594488274672395}{455844982308850645823811226} a^{7} + \frac{8891815117940856007814062588}{683767473463275968735716839} a^{6} - \frac{39017557966050852352567673713}{455844982308850645823811226} a^{5} - \frac{960524196593047411834558451}{17532499319571178685531201} a^{4} + \frac{343937540350445688732576118673}{1367534946926551937471433678} a^{3} + \frac{370578227356131112754635278819}{455844982308850645823811226} a^{2} - \frac{1677452171195855144773650974932}{683767473463275968735716839} a + \frac{1142898265461454923155914898636}{683767473463275968735716839} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1056761.71526 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |