Normalized defining polynomial
\( x^{16} - 7 x^{15} + 105 x^{14} - 603 x^{13} + 4664 x^{12} - 19527 x^{11} + 98430 x^{10} - 281106 x^{9} + 996221 x^{8} - 1660217 x^{7} + 4571362 x^{6} - 1562739 x^{5} + 8633293 x^{4} + 16230066 x^{3} + 15106142 x^{2} + 31743903 x + 24624031 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(914677666726224826965234765625=5^{8}\cdot 29^{6}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1528754762919660174457585107533544061080393668433016891} a^{15} + \frac{344164194895058685672173479292311792349991955700214742}{1528754762919660174457585107533544061080393668433016891} a^{14} - \frac{485987770388199083194241060678227918504840176544613169}{1528754762919660174457585107533544061080393668433016891} a^{13} - \frac{469186798783327452559999231562536673460347525286792060}{1528754762919660174457585107533544061080393668433016891} a^{12} - \frac{127001009328095115308772626870373923186743545469435720}{1528754762919660174457585107533544061080393668433016891} a^{11} - \frac{20936755606721495272723047039860428352548835513035759}{1528754762919660174457585107533544061080393668433016891} a^{10} - \frac{120462227955730064431139270354038675447857131157915782}{1528754762919660174457585107533544061080393668433016891} a^{9} + \frac{596706616354702128368713014765403842185112448049869285}{1528754762919660174457585107533544061080393668433016891} a^{8} + \frac{694979356993046136074706847987281548806025683002869514}{1528754762919660174457585107533544061080393668433016891} a^{7} + \frac{507393304294320904028580454835822844722848219501643123}{1528754762919660174457585107533544061080393668433016891} a^{6} + \frac{648885431422453834709520813683455174858948503158855259}{1528754762919660174457585107533544061080393668433016891} a^{5} - \frac{669192449916466601005616235171598338594728641421145786}{1528754762919660174457585107533544061080393668433016891} a^{4} - \frac{667534693772556668790512826985880803468367818453979732}{1528754762919660174457585107533544061080393668433016891} a^{3} + \frac{203513400886557730984283592549693951781844740819675946}{1528754762919660174457585107533544061080393668433016891} a^{2} + \frac{148132882087826044540219522261530596355466253845743757}{1528754762919660174457585107533544061080393668433016891} a - \frac{221463683324275150881897639734363856976717102840097327}{1528754762919660174457585107533544061080393668433016891}$
Class group and class number
$C_{2}\times C_{2}\times C_{2066}$, which has order $8264$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13998.0176198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^2:D_4$ (as 16T225):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^2.C_2^2:D_4$ |
| Character table for $C_2^2.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 4.4.64525.1, 4.4.2225.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |