Normalized defining polynomial
\( x^{16} - 5 x^{15} + 79 x^{14} - 319 x^{13} + 2147 x^{12} - 7204 x^{11} + 33080 x^{10} - 97972 x^{9} + 322152 x^{8} - 825737 x^{7} + 2256940 x^{6} - 4470224 x^{5} + 9705318 x^{4} - 15875277 x^{3} + 21559104 x^{2} - 23181663 x + 20355859 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(914677666726224826965234765625=5^{8}\cdot 29^{6}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{762722351122712977991532938132029529887320621377252177} a^{15} + \frac{172900649730767425166086691097258599862276263910444842}{762722351122712977991532938132029529887320621377252177} a^{14} + \frac{294734415635724941877906978776560189613416664715700742}{762722351122712977991532938132029529887320621377252177} a^{13} - \frac{209245467940319021802127903623786303437782504431783829}{762722351122712977991532938132029529887320621377252177} a^{12} - \frac{228672843751555757232612106788503022826931206943066033}{762722351122712977991532938132029529887320621377252177} a^{11} + \frac{128476405941054032318782918063256902355195698179219457}{762722351122712977991532938132029529887320621377252177} a^{10} - \frac{335239952023726218782993428831729871572584335049852265}{762722351122712977991532938132029529887320621377252177} a^{9} - \frac{220549985086486041267290329438731513183519250739905218}{762722351122712977991532938132029529887320621377252177} a^{8} - \frac{216869766613839979384541262096911140805103578265304538}{762722351122712977991532938132029529887320621377252177} a^{7} - \frac{104073783108932381891448491113960361043321847068187581}{762722351122712977991532938132029529887320621377252177} a^{6} + \frac{75107416332333739384587333666988614806843132529484336}{762722351122712977991532938132029529887320621377252177} a^{5} + \frac{843203700947086245125220092355863682939397441388604}{762722351122712977991532938132029529887320621377252177} a^{4} + \frac{70220279773326290771050284848560704856797157650220388}{762722351122712977991532938132029529887320621377252177} a^{3} + \frac{1842900966622379444495966665254541500972183048237684}{762722351122712977991532938132029529887320621377252177} a^{2} + \frac{192846114095981425356786022207845714178918713169701490}{762722351122712977991532938132029529887320621377252177} a - \frac{16694785326835574420008245928804818395992264132641804}{40143281638037525157449102006948922625648453756697483}$
Class group and class number
$C_{2}\times C_{2}\times C_{2692}$, which has order $10768$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13998.0176198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^2:D_4$ (as 16T225):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^2.C_2^2:D_4$ |
| Character table for $C_2^2.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.4.725.1, 4.4.2225.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |