Normalized defining polynomial
\( x^{16} + 3264 x^{14} + 3316496 x^{12} + 1304953472 x^{10} + 221639065992 x^{8} + 16702070265472 x^{6} + 490448945740944 x^{4} + 3874220981492640 x^{2} + 5934553794724178 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9051792270538665113859285354790637594769776181248=2^{79}\cdot 23^{4}\cdot 31^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1147.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 31, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2047} a^{10} - \frac{830}{2047} a^{8} + \frac{4}{23} a^{6} - \frac{840}{2047} a^{4} - \frac{251}{2047} a^{2}$, $\frac{1}{2047} a^{11} - \frac{830}{2047} a^{9} + \frac{4}{23} a^{7} - \frac{840}{2047} a^{5} - \frac{251}{2047} a^{3}$, $\frac{1}{1353437507} a^{12} - \frac{41770}{1353437507} a^{10} + \frac{5636154}{15207163} a^{8} + \frac{639438973}{1353437507} a^{6} + \frac{329104127}{1353437507} a^{4} + \frac{250066}{661181} a^{2} - \frac{44}{323}$, $\frac{1}{1353437507} a^{13} - \frac{41770}{1353437507} a^{11} + \frac{5636154}{15207163} a^{9} + \frac{639438973}{1353437507} a^{7} + \frac{329104127}{1353437507} a^{5} + \frac{250066}{661181} a^{3} - \frac{44}{323} a$, $\frac{1}{4185456580608101464912472566964221538160968427001} a^{14} - \frac{902213706513495423973493524769303357761}{4185456580608101464912472566964221538160968427001} a^{12} - \frac{1635473990870388489828565501903051996616083}{6718228861329215834530453558530050623051313687} a^{10} + \frac{489571319437045408814311032864547785653797708292}{4185456580608101464912472566964221538160968427001} a^{8} + \frac{1513856602975904888130787909795914025723002385230}{4185456580608101464912472566964221538160968427001} a^{6} - \frac{4924323865533973142721754770692166255397953}{17182171000841984231535686850460487526985457} a^{4} - \frac{417818009901061260023506129580768497846171}{998865827601463665633974956133267227997689} a^{2} + \frac{48888033826720832037808196549270996955}{487965719394950496157291136362123706887}$, $\frac{1}{54410935547905319043862143370534879996092589551013} a^{15} + \frac{310747883445468641290204243993088594325}{3200643267523842296697773139443228235064269973589} a^{13} + \frac{1231835668878142155756687755012087545138898}{87336975197279805848895896260890658099667077931} a^{11} + \frac{6080414127525653974754880299745134569493791677319}{54410935547905319043862143370534879996092589551013} a^{9} + \frac{14567559089080291443821652304723992424154554238858}{54410935547905319043862143370534879996092589551013} a^{7} + \frac{522669953529045798699952466146712081526986275}{3797259791186078515169386793951767743463785997} a^{5} + \frac{215266901566209823472401815660021590340700}{12985255758819027653241674429732473963969957} a^{3} - \frac{1547953345122080017616237410679102867378}{6343554352134356450044784772707608189531} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{20}\times C_{34192480}$, which has order $87532748800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30445425.2472 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2\wr C_2$ (as 16T385):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_4.C_2^2\wr C_2$ |
| Character table for $C_4.C_2^2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{62}) \), 4.4.1968128.1, 8.8.1983246246084608.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |