Properties

Label 16.0.90361374415...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{12}\cdot 29^{4}\cdot 41^{8}$
Root discriminant $99.37$
Ramified primes $2, 5, 29, 41$
Class number $5216$ (GRH)
Class group $[2, 4, 652]$ (GRH)
Galois group $C_2^4.C_2^3.C_2$ (as 16T646)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![904681, 674734, 671241, -809504, 369314, -254338, 191292, -114122, 51409, -12586, 3296, -1782, 578, -68, 21, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 21*x^14 - 68*x^13 + 578*x^12 - 1782*x^11 + 3296*x^10 - 12586*x^9 + 51409*x^8 - 114122*x^7 + 191292*x^6 - 254338*x^5 + 369314*x^4 - 809504*x^3 + 671241*x^2 + 674734*x + 904681)
 
gp: K = bnfinit(x^16 - 6*x^15 + 21*x^14 - 68*x^13 + 578*x^12 - 1782*x^11 + 3296*x^10 - 12586*x^9 + 51409*x^8 - 114122*x^7 + 191292*x^6 - 254338*x^5 + 369314*x^4 - 809504*x^3 + 671241*x^2 + 674734*x + 904681, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 21 x^{14} - 68 x^{13} + 578 x^{12} - 1782 x^{11} + 3296 x^{10} - 12586 x^{9} + 51409 x^{8} - 114122 x^{7} + 191292 x^{6} - 254338 x^{5} + 369314 x^{4} - 809504 x^{3} + 671241 x^{2} + 674734 x + 904681 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(90361374415646880016000000000000=2^{16}\cdot 5^{12}\cdot 29^{4}\cdot 41^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $99.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{20} a^{14} - \frac{1}{10} a^{13} - \frac{1}{20} a^{12} - \frac{1}{5} a^{11} + \frac{1}{20} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} + \frac{1}{20} a^{4} + \frac{1}{10} a^{3} - \frac{7}{20} a^{2} - \frac{1}{2} a + \frac{9}{20}$, $\frac{1}{158476519254065362274877114672467415712451780} a^{15} - \frac{44098497707967581738259025535274109587133}{2881391259164824768634129357681225740226396} a^{14} + \frac{128082329400915123031990876446436967550241}{7923825962703268113743855733623370785622589} a^{13} - \frac{6153327909636785227779350855007648100503013}{79238259627032681137438557336233707856225890} a^{12} + \frac{29875240425430047433862494488574756675742233}{158476519254065362274877114672467415712451780} a^{11} - \frac{7114807912095973100735186861774957210189221}{31695303850813072454975422934493483142490356} a^{10} - \frac{2139184336174316312946951459478733697743889}{31695303850813072454975422934493483142490356} a^{9} - \frac{22311233249875074479990212805881115632555569}{158476519254065362274877114672467415712451780} a^{8} + \frac{4890757865450238151750910493620610619858831}{14406956295824123843170646788406128701131980} a^{7} + \frac{23086127716179186673145069044839920924571321}{158476519254065362274877114672467415712451780} a^{6} + \frac{38608575545177392690833745476834129521085829}{79238259627032681137438557336233707856225890} a^{5} - \frac{10110962643265931509077685775127377160230119}{39619129813516340568719278668116853928112945} a^{4} + \frac{61735778741789746312319820958689130008969037}{158476519254065362274877114672467415712451780} a^{3} + \frac{61981230405214975207972569490230309832947641}{158476519254065362274877114672467415712451780} a^{2} + \frac{496874038692272226649459645589207963920103}{2732353780242506246118570942628748546766410} a - \frac{2809264597413986052290228721316389430849381}{79238259627032681137438557336233707856225890}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{652}$, which has order $5216$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 654643.422727 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3.C_2$ (as 16T646):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$
Character table for $C_2^4.C_2^3.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.16400.1, 4.4.3362000.1, 4.4.5125.1, 8.8.11303044000000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.8.4.1$x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$