Normalized defining polynomial
\( x^{16} - 6 x^{15} + 80 x^{14} - 362 x^{13} + 2875 x^{12} - 10382 x^{11} + 61600 x^{10} - 179463 x^{9} + 864452 x^{8} - 2002980 x^{7} + 8155895 x^{6} - 14377568 x^{5} + 50660274 x^{4} - 61397739 x^{3} + 190235724 x^{2} - 120478059 x + 333123229 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(901159687005577446635674386849=3^{8}\cdot 13^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(663=3\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{663}(1,·)$, $\chi_{663}(196,·)$, $\chi_{663}(389,·)$, $\chi_{663}(586,·)$, $\chi_{663}(77,·)$, $\chi_{663}(274,·)$, $\chi_{663}(467,·)$, $\chi_{663}(662,·)$, $\chi_{663}(155,·)$, $\chi_{663}(157,·)$, $\chi_{663}(545,·)$, $\chi_{663}(38,·)$, $\chi_{663}(625,·)$, $\chi_{663}(118,·)$, $\chi_{663}(506,·)$, $\chi_{663}(508,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{707559898229858732670008955739610191519885486} a^{15} + \frac{36983344400399505453322399944877912128434943}{707559898229858732670008955739610191519885486} a^{14} - \frac{32661980995904241614345408389761890545851615}{353779949114929366335004477869805095759942743} a^{13} - \frac{55085233924641028840090826757588725097081557}{707559898229858732670008955739610191519885486} a^{12} - \frac{20185437521173527746559328558331742009727301}{707559898229858732670008955739610191519885486} a^{11} - \frac{9843281883067889561341654817599318069100380}{353779949114929366335004477869805095759942743} a^{10} - \frac{176248807541448750574288111536341038247491945}{707559898229858732670008955739610191519885486} a^{9} - \frac{92932416474324531291129951133692315463085887}{707559898229858732670008955739610191519885486} a^{8} + \frac{51838610213749262899044504543248591451469612}{353779949114929366335004477869805095759942743} a^{7} + \frac{294554209885873440803188818915441893006537227}{707559898229858732670008955739610191519885486} a^{6} - \frac{251624163184129360520070841071525240158267089}{707559898229858732670008955739610191519885486} a^{5} - \frac{35950523758550727538713218743786368430232975}{353779949114929366335004477869805095759942743} a^{4} + \frac{353690848254412348422557690309477665159069847}{707559898229858732670008955739610191519885486} a^{3} + \frac{306770531952130665069425078615590185814993915}{707559898229858732670008955739610191519885486} a^{2} + \frac{94829680869449560763165755624188060198352536}{353779949114929366335004477869805095759942743} a - \frac{100813092612244984235238364066932046344429772}{353779949114929366335004477869805095759942743}$
Class group and class number
$C_{4}\times C_{4}\times C_{12}\times C_{192}$, which has order $36864$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-663}) \), \(\Q(\sqrt{17}, \sqrt{-39})\), 4.4.4913.1, 4.0.7472673.1, 8.0.55840841764929.8, \(\Q(\zeta_{17})^+\), 8.0.949294310003793.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||