Properties

Label 16.0.90075015625...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{8}\cdot 5^{14}\cdot 7^{8}$
Root discriminant $15.30$
Ramified primes $2, 5, 7$
Class number $1$
Class group Trivial
Galois group $(C_8:C_2):C_2$ (as 16T16)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, -67, 154, -227, 373, -497, 316, 54, -212, 93, 24, -26, 3, 6, -4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 4*x^14 + 6*x^13 + 3*x^12 - 26*x^11 + 24*x^10 + 93*x^9 - 212*x^8 + 54*x^7 + 316*x^6 - 497*x^5 + 373*x^4 - 227*x^3 + 154*x^2 - 67*x + 11)
 
gp: K = bnfinit(x^16 - x^15 - 4*x^14 + 6*x^13 + 3*x^12 - 26*x^11 + 24*x^10 + 93*x^9 - 212*x^8 + 54*x^7 + 316*x^6 - 497*x^5 + 373*x^4 - 227*x^3 + 154*x^2 - 67*x + 11, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 4 x^{14} + 6 x^{13} + 3 x^{12} - 26 x^{11} + 24 x^{10} + 93 x^{9} - 212 x^{8} + 54 x^{7} + 316 x^{6} - 497 x^{5} + 373 x^{4} - 227 x^{3} + 154 x^{2} - 67 x + 11 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9007501562500000000=2^{8}\cdot 5^{14}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{22} a^{12} - \frac{1}{2} a^{11} - \frac{3}{22} a^{10} + \frac{9}{22} a^{9} + \frac{5}{22} a^{8} - \frac{4}{11} a^{7} + \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{5}{22} a^{4} + \frac{5}{11} a^{3} + \frac{1}{22} a^{2} - \frac{3}{22} a - \frac{1}{2}$, $\frac{1}{22} a^{13} + \frac{4}{11} a^{11} - \frac{1}{11} a^{10} - \frac{3}{11} a^{9} + \frac{3}{22} a^{8} + \frac{5}{11} a^{7} - \frac{5}{11} a^{6} - \frac{5}{22} a^{5} - \frac{1}{22} a^{4} + \frac{1}{22} a^{3} + \frac{4}{11} a^{2} - \frac{1}{2}$, $\frac{1}{22} a^{14} - \frac{1}{11} a^{11} - \frac{2}{11} a^{10} - \frac{3}{22} a^{9} - \frac{4}{11} a^{8} + \frac{5}{11} a^{7} + \frac{3}{22} a^{6} - \frac{9}{22} a^{5} - \frac{3}{22} a^{4} - \frac{3}{11} a^{3} - \frac{4}{11} a^{2} - \frac{9}{22} a$, $\frac{1}{721317542} a^{15} - \frac{532863}{360658771} a^{14} - \frac{9202855}{721317542} a^{13} - \frac{4593266}{360658771} a^{12} + \frac{84451293}{360658771} a^{11} - \frac{325706699}{721317542} a^{10} - \frac{32808682}{360658771} a^{9} - \frac{96664179}{721317542} a^{8} + \frac{237876885}{721317542} a^{7} + \frac{231497547}{721317542} a^{6} + \frac{69285030}{360658771} a^{5} - \frac{72867711}{721317542} a^{4} - \frac{334775999}{721317542} a^{3} + \frac{118082339}{721317542} a^{2} + \frac{141129048}{360658771} a + \frac{15283621}{65574322}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1163091227}{721317542} a^{15} - \frac{791695599}{721317542} a^{14} - \frac{2502716833}{360658771} a^{13} + \frac{2658670304}{360658771} a^{12} + \frac{2771678693}{360658771} a^{11} - \frac{28448566849}{721317542} a^{10} + \frac{18353520857}{721317542} a^{9} + \frac{57919457543}{360658771} a^{8} - \frac{208755662661}{721317542} a^{7} - \frac{6435799719}{360658771} a^{6} + \frac{184705775673}{360658771} a^{5} - \frac{450403757995}{721317542} a^{4} + \frac{135502844154}{360658771} a^{3} - \frac{165162634097}{721317542} a^{2} + \frac{120984869521}{721317542} a - \frac{1493797046}{32787161} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3973.7989882 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$OD_{16}:C_2$ (as 16T16):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 20 conjugacy class representatives for $(C_8:C_2):C_2$
Character table for $(C_8:C_2):C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{5})\), 4.4.6125.1, \(\Q(\sqrt{5}, \sqrt{-7})\), 8.0.37515625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.4$x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$$2$$4$$8$$C_8$$[2]^{4}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
5Data not computed
7Data not computed