Normalized defining polynomial
\( x^{16} - 2 x^{15} + 91 x^{14} - 156 x^{13} + 3980 x^{12} - 5828 x^{11} + 107531 x^{10} - 132122 x^{9} + 1947249 x^{8} - 1943848 x^{7} + 24090615 x^{6} - 18462918 x^{5} + 198368818 x^{4} - 104591990 x^{3} + 993282715 x^{2} - 272656064 x + 2317576561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9001432898582155699240292122624=2^{16}\cdot 13^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(884=2^{2}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{884}(1,·)$, $\chi_{884}(259,·)$, $\chi_{884}(519,·)$, $\chi_{884}(781,·)$, $\chi_{884}(467,·)$, $\chi_{884}(727,·)$, $\chi_{884}(729,·)$, $\chi_{884}(155,·)$, $\chi_{884}(157,·)$, $\chi_{884}(417,·)$, $\chi_{884}(103,·)$, $\chi_{884}(365,·)$, $\chi_{884}(625,·)$, $\chi_{884}(883,·)$, $\chi_{884}(53,·)$, $\chi_{884}(831,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{9347967593006965880200401959963052993951829788617} a^{15} + \frac{4084114445089111147187698534120052899982138664401}{9347967593006965880200401959963052993951829788617} a^{14} - \frac{3908906287025226224286930599115958375782968573602}{9347967593006965880200401959963052993951829788617} a^{13} + \frac{3646302403394164440840256576172713496262964956600}{9347967593006965880200401959963052993951829788617} a^{12} - \frac{2291815155599577631697680258004251107209554273258}{9347967593006965880200401959963052993951829788617} a^{11} - \frac{1014013221765154162536516823613443469606539790174}{9347967593006965880200401959963052993951829788617} a^{10} - \frac{2459673929416682439348009582026488200568628004731}{9347967593006965880200401959963052993951829788617} a^{9} + \frac{602067814989698341434921759053809301576277404990}{9347967593006965880200401959963052993951829788617} a^{8} + \frac{4115605625624632691237893255613242342280962003304}{9347967593006965880200401959963052993951829788617} a^{7} + \frac{2042177877605285838934697532349515569590258446019}{9347967593006965880200401959963052993951829788617} a^{6} + \frac{4488536155889774446108469290821893518811223914288}{9347967593006965880200401959963052993951829788617} a^{5} - \frac{739886870622529324825880279128782263036010513849}{9347967593006965880200401959963052993951829788617} a^{4} - \frac{1664609384604064653010861215033007358634737920278}{9347967593006965880200401959963052993951829788617} a^{3} - \frac{121550900082912725331957220806456348097777647341}{9347967593006965880200401959963052993951829788617} a^{2} - \frac{2975425082420891628528546415272402271337712306613}{9347967593006965880200401959963052993951829788617} a - \frac{1194415634381393270188337321274838770290607785151}{9347967593006965880200401959963052993951829788617}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{8}\times C_{272}$, which has order $139264$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-221}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-13}, \sqrt{17})\), 4.4.4913.1, 4.0.13284752.4, 8.0.176484635701504.33, 8.0.3000238806925568.13, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |