Properties

Label 16.0.89791815397...0000.9
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}$
Root discriminant $55.86$
Ramified primes $2, 3, 5, 13$
Class number $3072$ (GRH)
Class group $[2, 4, 8, 48]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1332841, 1544424, 2009246, 1326168, 885224, 348468, 146358, 32856, 14201, 3756, 2346, 456, 104, -36, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 - 36*x^13 + 104*x^12 + 456*x^11 + 2346*x^10 + 3756*x^9 + 14201*x^8 + 32856*x^7 + 146358*x^6 + 348468*x^5 + 885224*x^4 + 1326168*x^3 + 2009246*x^2 + 1544424*x + 1332841)
 
gp: K = bnfinit(x^16 - 4*x^14 - 36*x^13 + 104*x^12 + 456*x^11 + 2346*x^10 + 3756*x^9 + 14201*x^8 + 32856*x^7 + 146358*x^6 + 348468*x^5 + 885224*x^4 + 1326168*x^3 + 2009246*x^2 + 1544424*x + 1332841, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} - 36 x^{13} + 104 x^{12} + 456 x^{11} + 2346 x^{10} + 3756 x^{9} + 14201 x^{8} + 32856 x^{7} + 146358 x^{6} + 348468 x^{5} + 885224 x^{4} + 1326168 x^{3} + 2009246 x^{2} + 1544424 x + 1332841 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8979181539709000089600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1560=2^{3}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1560}(1,·)$, $\chi_{1560}(131,·)$, $\chi_{1560}(389,·)$, $\chi_{1560}(1351,·)$, $\chi_{1560}(1481,·)$, $\chi_{1560}(781,·)$, $\chi_{1560}(1039,·)$, $\chi_{1560}(1169,·)$, $\chi_{1560}(259,·)$, $\chi_{1560}(469,·)$, $\chi_{1560}(599,·)$, $\chi_{1560}(911,·)$, $\chi_{1560}(1249,·)$, $\chi_{1560}(1379,·)$, $\chi_{1560}(571,·)$, $\chi_{1560}(701,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{3}{10}$, $\frac{1}{30} a^{12} + \frac{1}{30} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{7}{30} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{30} a^{2} + \frac{2}{5} a + \frac{7}{30}$, $\frac{1}{30} a^{13} + \frac{1}{30} a^{11} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{7}{30} a^{7} + \frac{2}{5} a^{6} + \frac{1}{10} a^{4} + \frac{1}{30} a^{3} + \frac{2}{5} a^{2} + \frac{7}{30} a - \frac{1}{2}$, $\frac{1}{5291370} a^{14} - \frac{9379}{755910} a^{13} - \frac{2897}{1058274} a^{12} - \frac{114104}{2645685} a^{11} + \frac{103483}{5291370} a^{10} + \frac{7421}{58793} a^{9} + \frac{580936}{2645685} a^{8} + \frac{194050}{529137} a^{7} - \frac{440761}{5291370} a^{6} + \frac{40492}{293965} a^{5} - \frac{1123204}{2645685} a^{4} + \frac{1271731}{2645685} a^{3} + \frac{427741}{2645685} a^{2} - \frac{339889}{755910} a - \frac{210541}{1058274}$, $\frac{1}{1546869277090136786860207890} a^{15} + \frac{7365813434392402492}{257811546181689464476701315} a^{14} - \frac{11296334575457913691672117}{773434638545068393430103945} a^{13} + \frac{6410574200212211688417824}{773434638545068393430103945} a^{12} - \frac{24551835928533017116375127}{515623092363378928953402630} a^{11} - \frac{55880467149854415591248627}{1546869277090136786860207890} a^{10} + \frac{260923421087943212883245777}{1546869277090136786860207890} a^{9} - \frac{12018764640120962176011583}{73660441766196989850486090} a^{8} + \frac{10507135887064614984137323}{34374872824225261930226842} a^{7} + \frac{304071200888277807910861253}{1546869277090136786860207890} a^{6} - \frac{89250457142099947302359801}{1546869277090136786860207890} a^{5} + \frac{1951171975872080955640439}{103124618472675785790680526} a^{4} - \frac{18602639380427185037207735}{154686927709013678686020789} a^{3} + \frac{1120712023453120118599253}{3589023844756697881346190} a^{2} - \frac{210530847856282790307247967}{515623092363378928953402630} a - \frac{131133880664052629670349723}{309373855418027357372041578}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{8}\times C_{48}$, which has order $3072$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15197.42445606848 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-390}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{-130}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-65}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{2}, \sqrt{-195})\), \(\Q(\sqrt{3}, \sqrt{-130})\), \(\Q(\sqrt{6}, \sqrt{-65})\), \(\Q(\sqrt{2}, \sqrt{-65})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{6}, \sqrt{-130})\), \(\Q(\sqrt{3}, \sqrt{-65})\), \(\Q(\sqrt{10}, \sqrt{-39})\), \(\Q(\sqrt{5}, \sqrt{-78})\), \(\Q(\sqrt{-13}, \sqrt{30})\), \(\Q(\sqrt{15}, \sqrt{-26})\), \(\Q(\sqrt{2}, \sqrt{-39})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{2}, \sqrt{-13})\), \(\Q(\sqrt{5}, \sqrt{-39})\), \(\Q(\sqrt{10}, \sqrt{-78})\), \(\Q(\sqrt{-26}, \sqrt{30})\), \(\Q(\sqrt{-13}, \sqrt{15})\), \(\Q(\sqrt{30}, \sqrt{-39})\), \(\Q(\sqrt{10}, \sqrt{-13})\), \(\Q(\sqrt{15}, \sqrt{-78})\), \(\Q(\sqrt{5}, \sqrt{-26})\), \(\Q(\sqrt{3}, \sqrt{-13})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{-26})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{15}, \sqrt{-39})\), \(\Q(\sqrt{10}, \sqrt{-26})\), \(\Q(\sqrt{30}, \sqrt{-65})\), \(\Q(\sqrt{5}, \sqrt{-13})\), \(\Q(\sqrt{6}, \sqrt{-26})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{6}, \sqrt{-13})\), \(\Q(\sqrt{5}, \sqrt{6})\), 8.0.94758543360000.186, 8.0.5922408960000.17, 8.0.94758543360000.53, 8.0.94758543360000.130, 8.0.94758543360000.166, 8.0.94758543360000.161, 8.0.94758543360000.188, 8.0.94758543360000.110, 8.0.1169858560000.8, 8.0.151613669376.5, 8.8.3317760000.1, 8.0.5922408960000.14, 8.0.94758543360000.86, 8.0.370150560000.5, 8.0.94758543360000.80

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$