Normalized defining polynomial
\( x^{16} - 4 x^{15} + 30 x^{14} - 56 x^{13} + 371 x^{12} - 588 x^{11} + 3614 x^{10} - 4076 x^{9} + 18768 x^{8} - 39664 x^{7} + 32116 x^{6} - 34272 x^{5} + 43695 x^{4} - 20088 x^{3} + 9072 x^{2} - 14580 x + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8979181539709000089600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1560=2^{3}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1560}(1,·)$, $\chi_{1560}(1091,·)$, $\chi_{1560}(389,·)$, $\chi_{1560}(961,·)$, $\chi_{1560}(521,·)$, $\chi_{1560}(1559,·)$, $\chi_{1560}(1039,·)$, $\chi_{1560}(131,·)$, $\chi_{1560}(1429,·)$, $\chi_{1560}(599,·)$, $\chi_{1560}(79,·)$, $\chi_{1560}(989,·)$, $\chi_{1560}(1171,·)$, $\chi_{1560}(1481,·)$, $\chi_{1560}(571,·)$, $\chi_{1560}(469,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{3}$, $\frac{1}{45} a^{10} - \frac{1}{45} a^{9} + \frac{2}{45} a^{8} - \frac{2}{15} a^{7} + \frac{1}{15} a^{6} + \frac{2}{15} a^{5} - \frac{16}{45} a^{4} + \frac{7}{45} a^{3} - \frac{8}{45} a^{2} + \frac{7}{15} a - \frac{1}{5}$, $\frac{1}{135} a^{11} - \frac{4}{135} a^{9} + \frac{2}{45} a^{8} + \frac{4}{45} a^{7} + \frac{1}{15} a^{6} + \frac{4}{27} a^{5} + \frac{4}{15} a^{4} - \frac{56}{135} a^{3} + \frac{1}{45} a^{2} - \frac{2}{15} a - \frac{2}{5}$, $\frac{1}{270} a^{12} + \frac{1}{135} a^{10} - \frac{1}{45} a^{8} + \frac{1}{15} a^{7} + \frac{19}{135} a^{6} - \frac{1}{15} a^{5} + \frac{59}{135} a^{4} + \frac{1}{3} a^{3} - \frac{2}{15} a^{2} + \frac{4}{15} a + \frac{3}{10}$, $\frac{1}{270} a^{13} + \frac{1}{135} a^{9} + \frac{1}{45} a^{8} + \frac{7}{135} a^{7} - \frac{2}{15} a^{6} - \frac{2}{45} a^{5} + \frac{1}{15} a^{4} - \frac{7}{135} a^{3} + \frac{11}{45} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{28350} a^{14} + \frac{1}{2025} a^{13} - \frac{1}{675} a^{12} - \frac{7}{2025} a^{11} - \frac{1}{405} a^{10} - \frac{28}{675} a^{9} - \frac{272}{14175} a^{8} + \frac{563}{14175} a^{7} + \frac{41}{675} a^{6} + \frac{262}{2025} a^{5} - \frac{442}{2025} a^{4} - \frac{49}{675} a^{3} + \frac{67}{3150} a^{2} - \frac{1}{175} a - \frac{83}{175}$, $\frac{1}{4642234982449144438050} a^{15} + \frac{3612667744674584}{211010681020415656275} a^{14} - \frac{158759661260265388}{110529404344027248525} a^{13} + \frac{149564907846852427}{663176426064163491150} a^{12} - \frac{2897698530864257}{1039461482859190425} a^{11} + \frac{328970738856002152}{110529404344027248525} a^{10} - \frac{78434892224401333529}{2321117491224572219025} a^{9} - \frac{24402184945598640833}{464223498244914443805} a^{8} - \frac{31781388689369268529}{773705830408190739675} a^{7} - \frac{14288929335216116021}{331588213032081745575} a^{6} + \frac{5271729001057472516}{331588213032081745575} a^{5} + \frac{3582744191535143582}{7368626956268483235} a^{4} + \frac{209656349317520112109}{515803886938793826450} a^{3} - \frac{267881482019856202}{818736328474275915} a^{2} + \frac{1883908992494746484}{4093681642371379575} a + \frac{71829774715203709}{6367949221466590450}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{24}$, which has order $1536$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11534920205552603}{13263528521283269823} a^{15} - \frac{34002515113469863}{12057753201166608930} a^{14} + \frac{528270425023034596}{22105880868805449705} a^{13} - \frac{403684994501195092}{13263528521283269823} a^{12} + \frac{61965666319317194}{207892296571838085} a^{11} - \frac{6279425282397473164}{22105880868805449705} a^{10} + \frac{192866449298116281482}{66317642606416349115} a^{9} - \frac{17628948249965587747}{13263528521283269823} a^{8} + \frac{334256059142108560264}{22105880868805449705} a^{7} - \frac{1526131227462003227128}{66317642606416349115} a^{6} + \frac{625700314695054558778}{66317642606416349115} a^{5} - \frac{31640272318187983016}{1473725391253696647} a^{4} + \frac{30958488597743954033}{1473725391253696647} a^{3} + \frac{9694751995797215}{109164843796570122} a^{2} + \frac{5168238642752747542}{818736328474275915} a - \frac{616338840455100296}{90970703163808435} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1548459.9054883746 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |