Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 32 x^{13} + 49 x^{12} - 110 x^{11} + 290 x^{10} - 584 x^{9} + 890 x^{8} - 1238 x^{7} + 1936 x^{6} - 3410 x^{5} + 5784 x^{4} - 8416 x^{3} + 9248 x^{2} - 6664 x + 2401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(89791815397090000896=2^{24}\cdot 3^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{559} a^{14} + \frac{158}{559} a^{13} + \frac{184}{559} a^{12} - \frac{67}{559} a^{11} - \frac{57}{559} a^{10} - \frac{47}{559} a^{9} - \frac{4}{559} a^{8} + \frac{264}{559} a^{7} + \frac{153}{559} a^{6} - \frac{246}{559} a^{5} - \frac{261}{559} a^{4} + \frac{229}{559} a^{3} + \frac{264}{559} a^{2} + \frac{161}{559} a - \frac{187}{559}$, $\frac{1}{2349147166203929} a^{15} - \frac{683457291222}{2349147166203929} a^{14} - \frac{83049688233431}{2349147166203929} a^{13} + \frac{208940879455983}{2349147166203929} a^{12} - \frac{12915363398481}{47941778902121} a^{11} - \frac{735884117363659}{2349147166203929} a^{10} - \frac{147134164215735}{2349147166203929} a^{9} - \frac{773461351938481}{2349147166203929} a^{8} + \frac{1010619624400814}{2349147166203929} a^{7} + \frac{197310952505374}{2349147166203929} a^{6} + \frac{503118258335998}{2349147166203929} a^{5} - \frac{433446557818338}{2349147166203929} a^{4} - \frac{567699269410278}{2349147166203929} a^{3} + \frac{492438966559027}{2349147166203929} a^{2} + \frac{26519982593966}{2349147166203929} a + \frac{22362127586711}{47941778902121}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{581198026212}{180703628169533} a^{15} - \frac{13476255212736}{180703628169533} a^{14} + \frac{47212645170834}{180703628169533} a^{13} - \frac{85188239392301}{180703628169533} a^{12} + \frac{1799005467597}{3687829146317} a^{11} - \frac{217068316596175}{180703628169533} a^{10} + \frac{720636009602982}{180703628169533} a^{9} - \frac{1498169100220825}{180703628169533} a^{8} + \frac{2063405717241483}{180703628169533} a^{7} - \frac{2596147975356398}{180703628169533} a^{6} + \frac{4392578391491888}{180703628169533} a^{5} - \frac{7857060417195051}{180703628169533} a^{4} + \frac{322483735291443}{4202409957431} a^{3} - \frac{20598297783832655}{180703628169533} a^{2} + \frac{21367928742345961}{180703628169533} a - \frac{228988953256037}{3687829146317} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6351.23209965 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T149):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), 4.0.117.1, \(\Q(\zeta_{12})\), 4.0.1872.1, 8.0.592240896.3 x2, 8.0.728911872.3 x2, 8.0.3504384.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |