Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 28 x^{13} + 53 x^{12} - 2 x^{11} - 24 x^{10} + 76 x^{9} - 108 x^{8} - 10 x^{7} + 50 x^{6} - 146 x^{5} + 261 x^{4} - 88 x^{3} + 18 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(89791815397090000896=2^{24}\cdot 3^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{18} a^{13} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{6} a - \frac{2}{9}$, $\frac{1}{413838} a^{14} + \frac{3457}{413838} a^{13} + \frac{27437}{413838} a^{12} + \frac{7478}{206919} a^{11} - \frac{1022}{22991} a^{10} + \frac{78547}{206919} a^{9} + \frac{96209}{206919} a^{8} - \frac{77177}{206919} a^{7} - \frac{20}{747} a^{6} - \frac{62153}{206919} a^{5} + \frac{22204}{206919} a^{4} - \frac{14653}{206919} a^{3} - \frac{111929}{413838} a^{2} - \frac{31345}{413838} a + \frac{183713}{413838}$, $\frac{1}{23767130178} a^{15} + \frac{721}{3961188363} a^{14} - \frac{96846296}{3961188363} a^{13} + \frac{1938590}{516676743} a^{12} - \frac{49995854}{3961188363} a^{11} + \frac{506781079}{3961188363} a^{10} + \frac{5304277910}{11883565089} a^{9} - \frac{1633494509}{3961188363} a^{8} - \frac{705144169}{3961188363} a^{7} + \frac{3446003714}{11883565089} a^{6} + \frac{515716823}{3961188363} a^{5} - \frac{28427000}{172225581} a^{4} + \frac{1094673863}{7922376726} a^{3} + \frac{888150038}{3961188363} a^{2} + \frac{1443280070}{3961188363} a - \frac{3445329254}{11883565089}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4957783102}{11883565089} a^{15} + \frac{12636334541}{7922376726} a^{14} - \frac{36188101511}{11883565089} a^{13} + \frac{5735328002}{516676743} a^{12} - \frac{238439687029}{11883565089} a^{11} - \frac{35704621015}{11883565089} a^{10} + \frac{39857355037}{3961188363} a^{9} - \frac{356044289906}{11883565089} a^{8} + \frac{156446339762}{3961188363} a^{7} + \frac{138249837940}{11883565089} a^{6} - \frac{79132239821}{3961188363} a^{5} + \frac{29600926387}{516676743} a^{4} - \frac{129779108649}{1320396121} a^{3} + \frac{439208418887}{23767130178} a^{2} - \frac{5497296557}{3961188363} a + \frac{4935594205}{3961188363} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14943.0195941 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 16T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |