Normalized defining polynomial
\( x^{16} - 4 x^{15} + 44 x^{14} + 4 x^{13} + 876 x^{12} + 720 x^{11} + 22468 x^{10} + 17504 x^{9} + 268071 x^{8} + 532960 x^{7} + 2974708 x^{6} + 2083248 x^{5} + 17162450 x^{4} + 28664052 x^{3} + 45297924 x^{2} + 4998924 x + 1148841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(897799389814236119040000000000=2^{40}\cdot 3^{4}\cdot 5^{10}\cdot 19^{4}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{465} a^{14} - \frac{7}{465} a^{13} - \frac{1}{15} a^{12} - \frac{68}{465} a^{11} - \frac{74}{155} a^{10} - \frac{28}{155} a^{9} + \frac{136}{465} a^{8} + \frac{143}{465} a^{7} + \frac{77}{155} a^{6} + \frac{157}{465} a^{5} + \frac{148}{465} a^{4} - \frac{2}{31} a^{3} + \frac{2}{15} a^{2} - \frac{13}{155} a - \frac{71}{155}$, $\frac{1}{5563192857703552017879357433125533189380665021351501975} a^{15} + \frac{117045659646440065229546172242837903700730197452}{7178313364778776797263687010484558954039567769485809} a^{14} - \frac{131999925403455318849948524350232454321623457688064761}{5563192857703552017879357433125533189380665021351501975} a^{13} - \frac{29202135763265561472531475752171945941428365197048953}{1112638571540710403575871486625106637876133004270300395} a^{12} + \frac{306285089724869904591152020245130619472794103385001634}{618132539744839113097706381458392576597851669039055775} a^{11} - \frac{203869773200054626246101585959949374432586399975949652}{1854397619234517339293119144375177729793555007117167325} a^{10} - \frac{168137130330117193461894294183497501660874732345325751}{5563192857703552017879357433125533189380665021351501975} a^{9} + \frac{235048933221213489397969278226816967807235471255660427}{1112638571540710403575871486625106637876133004270300395} a^{8} - \frac{122916282586809234630400059775246593065432125796891916}{618132539744839113097706381458392576597851669039055775} a^{7} - \frac{792746220054306259653734718195588350863169849218891616}{5563192857703552017879357433125533189380665021351501975} a^{6} + \frac{1501966551915849466841952353029812215668197449731559674}{5563192857703552017879357433125533189380665021351501975} a^{5} + \frac{351770047042548895985289610939505433936605063190932833}{1854397619234517339293119144375177729793555007117167325} a^{4} + \frac{2157012416240329795298849265812361462276849083588373431}{5563192857703552017879357433125533189380665021351501975} a^{3} + \frac{172883667347862521831660702963577333077794100536330217}{1854397619234517339293119144375177729793555007117167325} a^{2} - \frac{65270740424249075499534571219856100321866983217301389}{1854397619234517339293119144375177729793555007117167325} a - \frac{65798986580198340215425846231498508377657340521529726}{618132539744839113097706381458392576597851669039055775}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11014507.1976 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), 4.0.7600.1, 4.0.30400.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.14786560000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |