Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 8 x^{13} + 8 x^{12} - 24 x^{11} + 40 x^{10} + 32 x^{9} - 131 x^{8} - 176 x^{7} + 648 x^{6} - 288 x^{5} - 604 x^{4} + 732 x^{3} + 36 x^{2} - 432 x + 243 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(896905412873600106496=2^{40}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{9} a^{8} - \frac{4}{27} a^{7} + \frac{1}{3} a^{6} + \frac{4}{27} a^{5} - \frac{8}{27} a^{4} - \frac{2}{27} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{107697800712087} a^{15} - \frac{1192241503975}{107697800712087} a^{14} - \frac{1250532545854}{107697800712087} a^{13} - \frac{5052209855327}{107697800712087} a^{12} - \frac{5666090652565}{107697800712087} a^{11} - \frac{1255614540032}{35899266904029} a^{10} - \frac{223752970505}{107697800712087} a^{9} + \frac{9731843634734}{107697800712087} a^{8} + \frac{13055835776341}{107697800712087} a^{7} - \frac{10144956366083}{107697800712087} a^{6} - \frac{3082074837679}{11966422301343} a^{5} - \frac{15138940078249}{35899266904029} a^{4} + \frac{31008313191371}{107697800712087} a^{3} - \frac{70538308252}{3988807433781} a^{2} + \frac{3980163536065}{11966422301343} a + \frac{221412547275}{1329602477927}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14545.5858645 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{-2}) \), 4.2.2704.1, 4.2.10816.1, \(\Q(\sqrt{-2}, \sqrt{13})\), 8.2.1871773696.1, 8.2.1871773696.2, 8.0.1871773696.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |