Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 186 x^{12} - 388 x^{11} + 760 x^{10} - 1292 x^{9} + 1957 x^{8} - 2628 x^{7} + 2424 x^{6} - 1016 x^{5} - 216 x^{4} + 408 x^{3} - 56 x^{2} - 80 x + 40 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(891610044825600000000=2^{32}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{28110940} a^{14} - \frac{7}{28110940} a^{13} + \frac{1924381}{28110940} a^{12} + \frac{501855}{5622188} a^{11} + \frac{150169}{2162380} a^{10} - \frac{2309321}{28110940} a^{9} + \frac{1790911}{28110940} a^{8} + \frac{6183653}{28110940} a^{7} - \frac{640916}{7027735} a^{6} + \frac{137041}{1081190} a^{5} - \frac{6498857}{14055470} a^{4} - \frac{580257}{14055470} a^{3} - \frac{291381}{7027735} a^{2} + \frac{10333}{127777} a + \frac{337022}{1405547}$, $\frac{1}{5537855180} a^{15} + \frac{7}{425988860} a^{14} + \frac{20062397}{1107571036} a^{13} - \frac{231240371}{2768927590} a^{12} - \frac{960909273}{5537855180} a^{11} + \frac{85664081}{553785518} a^{10} + \frac{1209135393}{5537855180} a^{9} - \frac{285137357}{2768927590} a^{8} - \frac{11291920}{276892759} a^{7} - \frac{1705281}{5537855180} a^{6} + \frac{83758557}{2768927590} a^{5} - \frac{568218714}{1384463795} a^{4} - \frac{422277134}{1384463795} a^{3} + \frac{414760282}{1384463795} a^{2} + \frac{579091}{1405547} a - \frac{107526544}{276892759}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{10834}{108119} a^{14} - \frac{75838}{108119} a^{13} + \frac{265103}{108119} a^{12} - \frac{604724}{108119} a^{11} + \frac{1269065}{108119} a^{10} - \frac{2609494}{108119} a^{9} + \frac{9875611}{216238} a^{8} - \frac{7647698}{108119} a^{7} + \frac{10874153}{108119} a^{6} - \frac{13416877}{108119} a^{5} + \frac{13690025}{216238} a^{4} + \frac{3285285}{108119} a^{3} - \frac{3204457}{108119} a^{2} + \frac{6530}{9829} a + \frac{948813}{108119} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15800.4377022 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{15}) \), 4.0.2880.1, 4.0.320.1, \(\Q(i, \sqrt{15})\), 8.0.5971968000.1, 8.0.5971968000.2, 8.0.207360000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.65 | $x^{8} + 4 x^{6} + 28 x^{4} + 20$ | $8$ | $1$ | $16$ | $QD_{16}$ | $[2, 2, 5/2]^{2}$ |
| 2.8.16.65 | $x^{8} + 4 x^{6} + 28 x^{4} + 20$ | $8$ | $1$ | $16$ | $QD_{16}$ | $[2, 2, 5/2]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |