Normalized defining polynomial
\( x^{16} - 12x^{14} + 115x^{12} - 624x^{10} + 2109x^{8} - 4320x^{6} + 5275x^{4} - 3000x^{2} + 625 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(891610044825600000000\)
\(\medspace = 2^{32}\cdot 3^{12}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(20.39\) |
| |
| Galois root discriminant: | $2^{2}3^{3/4}5^{1/2}\approx 20.38853093816547$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.3317760000.2 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{8}+\frac{1}{5}a^{4}-\frac{1}{5}a^{2}$, $\frac{1}{5}a^{11}-\frac{2}{5}a^{9}+\frac{1}{5}a^{5}-\frac{1}{5}a^{3}$, $\frac{1}{25}a^{12}-\frac{2}{25}a^{10}-\frac{1}{5}a^{8}+\frac{1}{25}a^{6}-\frac{6}{25}a^{4}-\frac{1}{5}a^{2}$, $\frac{1}{25}a^{13}-\frac{2}{25}a^{11}-\frac{1}{5}a^{9}+\frac{1}{25}a^{7}-\frac{6}{25}a^{5}-\frac{1}{5}a^{3}$, $\frac{1}{2550065375}a^{14}+\frac{8181773}{2550065375}a^{12}+\frac{3868598}{39231775}a^{10}-\frac{88740948}{196158875}a^{8}-\frac{42367021}{231824125}a^{6}-\frac{12655066}{510013075}a^{4}+\frac{38654581}{102002615}a^{2}-\frac{4582596}{20400523}$, $\frac{1}{2550065375}a^{15}+\frac{8181773}{2550065375}a^{13}+\frac{3868598}{39231775}a^{11}-\frac{88740948}{196158875}a^{9}-\frac{42367021}{231824125}a^{7}-\frac{12655066}{510013075}a^{5}+\frac{38654581}{102002615}a^{3}-\frac{4582596}{20400523}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{4}$, which has order $4$ |
| |
| Narrow class group: | $C_{4}$, which has order $4$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -\frac{9328001}{2550065375} a^{14} + \frac{95851222}{2550065375} a^{12} - \frac{14298754}{39231775} a^{10} + \frac{342650098}{196158875} a^{8} - \frac{1283169559}{231824125} a^{6} + \frac{5206926742}{510013075} a^{4} - \frac{1150864834}{102002615} a^{2} + \frac{60998362}{20400523} \)
(order $12$)
|
| |
| Fundamental units: |
$\frac{15835669}{2550065375}a^{14}-\frac{178519708}{2550065375}a^{12}+\frac{25677643}{39231775}a^{10}-\frac{652121687}{196158875}a^{8}+\frac{2314658306}{231824125}a^{6}-\frac{346790417}{20400523}a^{4}+\frac{312037210}{20400523}a^{2}-\frac{100210538}{20400523}$, $\frac{17304847}{2550065375}a^{14}-\frac{195791789}{2550065375}a^{12}+\frac{28425092}{39231775}a^{10}-\frac{728220956}{196158875}a^{8}+\frac{2675231018}{231824125}a^{6}-\frac{10523714118}{510013075}a^{4}+\frac{2105090264}{102002615}a^{2}-\frac{128035120}{20400523}$, $\frac{3988318}{2550065375}a^{14}-\frac{42034221}{2550065375}a^{12}+\frac{5732297}{39231775}a^{10}-\frac{133684789}{196158875}a^{8}+\frac{355081512}{231824125}a^{6}-\frac{839999206}{510013075}a^{4}-\frac{31927288}{102002615}a^{2}+\frac{19243218}{20400523}$, $\frac{828667}{231824125}a^{15}-\frac{5627597}{2550065375}a^{14}-\frac{9437984}{231824125}a^{13}+\frac{55216289}{2550065375}a^{12}+\frac{1369566}{3566525}a^{11}-\frac{7474817}{39231775}a^{10}-\frac{35520966}{17832625}a^{9}+\frac{159103706}{196158875}a^{8}+\frac{1452889098}{231824125}a^{7}-\frac{351578518}{231824125}a^{6}-\frac{558744562}{46364825}a^{5}+\frac{242485368}{510013075}a^{4}+\frac{130018388}{9272965}a^{3}+\frac{229124736}{102002615}a^{2}-\frac{12980813}{1854593}a-\frac{52441839}{20400523}$, $\frac{2349249}{2550065375}a^{15}-\frac{7797446}{2550065375}a^{14}-\frac{44724278}{2550065375}a^{13}+\frac{92386917}{2550065375}a^{12}+\frac{6651521}{39231775}a^{11}-\frac{13437598}{39231775}a^{10}-\frac{226467152}{196158875}a^{9}+\frac{356867558}{196158875}a^{8}+\frac{1040482941}{231824125}a^{7}-\frac{1357136959}{231824125}a^{6}-\frac{5074302008}{510013075}a^{5}+\frac{5576156876}{510013075}a^{4}+\frac{1183350166}{102002615}a^{3}-\frac{1214981081}{102002615}a^{2}-\frac{99078074}{20400523}a+\frac{90391258}{20400523}$, $\frac{1138491}{2550065375}a^{15}+\frac{936756}{196158875}a^{14}-\frac{3877257}{2550065375}a^{13}-\frac{10308322}{196158875}a^{12}+\frac{938888}{39231775}a^{11}+\frac{19092163}{39231775}a^{10}-\frac{5159768}{196158875}a^{9}-\frac{471175119}{196158875}a^{8}+\frac{60827639}{231824125}a^{7}+\frac{121340264}{17832625}a^{6}-\frac{829402806}{510013075}a^{5}-\frac{401347934}{39231775}a^{4}+\frac{475976838}{102002615}a^{3}+\frac{49458516}{7846355}a^{2}-\frac{96152708}{20400523}a+\frac{1045886}{1569271}$, $\frac{3808918}{2550065375}a^{15}+\frac{2500326}{2550065375}a^{14}-\frac{34480571}{2550065375}a^{13}-\frac{34693327}{2550065375}a^{12}+\frac{5043557}{39231775}a^{11}+\frac{5109598}{39231775}a^{10}-\frac{104981489}{196158875}a^{9}-\frac{150502073}{196158875}a^{8}+\frac{320157012}{231824125}a^{7}+\frac{623405079}{231824125}a^{6}-\frac{1099368706}{510013075}a^{5}-\frac{2721433431}{510013075}a^{4}+\frac{228828363}{102002615}a^{3}+\frac{596955802}{102002615}a^{2}-\frac{24511805}{20400523}a-\frac{30183346}{20400523}$
|
| |
| Regulator: | \( 14466.6129733 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 14466.6129733 \cdot 4}{12\cdot\sqrt{891610044825600000000}}\cr\approx \mathstrut & 0.392280823887 \end{aligned}\]
Galois group
$D_4:C_2^2$ (as 16T18):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$ |
| Character table for $C_2 \times (C_4\times C_2):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{8}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.4.32b1.1 | $x^{16} + 4 x^{13} + 4 x^{12} + 6 x^{10} + 12 x^{9} + 8 x^{8} + 4 x^{7} + 12 x^{6} + 16 x^{5} + 13 x^{4} + 4 x^{3} + 8 x^{2} + 12 x + 9$ | $4$ | $4$ | $32$ | $C_4\times C_2^2$ | $$[2, 3]^{4}$$ |
|
\(3\)
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ |
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |