Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 80 x^{12} + 116 x^{11} + 46 x^{10} - 340 x^{9} + 625 x^{8} - 900 x^{7} + 602 x^{6} + 460 x^{5} - 1016 x^{4} + 612 x^{3} + 66 x^{2} - 204 x + 201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(891610044825600000000=2^{32}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{5}{18} a^{5} + \frac{1}{18} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{54} a^{12} - \frac{2}{27} a^{10} - \frac{2}{9} a^{7} + \frac{7}{27} a^{6} + \frac{1}{9} a^{5} - \frac{10}{27} a^{4} - \frac{4}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a + \frac{7}{18}$, $\frac{1}{3726} a^{13} + \frac{14}{1863} a^{12} + \frac{16}{1863} a^{11} + \frac{34}{1863} a^{10} + \frac{4}{23} a^{9} - \frac{229}{1242} a^{8} - \frac{620}{1863} a^{7} + \frac{11}{81} a^{6} - \frac{187}{1863} a^{5} + \frac{397}{3726} a^{4} + \frac{220}{621} a^{3} + \frac{176}{621} a^{2} + \frac{217}{1242} a + \frac{565}{1242}$, $\frac{1}{2813130} a^{14} - \frac{7}{2813130} a^{13} + \frac{761}{312570} a^{12} - \frac{41003}{2813130} a^{11} + \frac{205751}{2813130} a^{10} - \frac{217687}{937710} a^{9} + \frac{194908}{1406565} a^{8} - \frac{180955}{562626} a^{7} + \frac{416827}{937710} a^{6} + \frac{1342841}{2813130} a^{5} - \frac{125968}{1406565} a^{4} - \frac{6721}{62514} a^{3} - \frac{176447}{468855} a^{2} + \frac{539}{93771} a + \frac{193573}{937710}$, $\frac{1}{42196950} a^{15} + \frac{907}{8439390} a^{13} - \frac{7381}{843939} a^{12} + \frac{21007}{2813130} a^{11} + \frac{4018}{21098475} a^{10} - \frac{4934513}{21098475} a^{9} + \frac{94477}{7032825} a^{8} + \frac{16948711}{42196950} a^{7} - \frac{4745756}{21098475} a^{6} - \frac{131434}{7032825} a^{5} - \frac{4452016}{21098475} a^{4} - \frac{480602}{7032825} a^{3} + \frac{2432336}{7032825} a^{2} - \frac{1180729}{4688550} a + \frac{3163343}{7032825}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{204272}{21098475} a^{15} - \frac{102136}{1406565} a^{14} + \frac{142216}{843939} a^{13} + \frac{25168}{4219695} a^{12} - \frac{10628}{17365} a^{11} + \frac{18518302}{21098475} a^{10} + \frac{5431468}{21098475} a^{9} - \frac{5745739}{2344275} a^{8} + \frac{111792092}{21098475} a^{7} - \frac{176448854}{21098475} a^{6} + \frac{15642908}{2344275} a^{5} - \frac{5839264}{21098475} a^{4} - \frac{29866988}{7032825} a^{3} + \frac{26116994}{7032825} a^{2} - \frac{2045188}{2344275} a + \frac{3131072}{7032825} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28877.951681 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_4$ (as 16T25):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 \times D_4$ |
| Character table for $C_2^2 \times D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |