Normalized defining polynomial
\( x^{16} - 4 x^{15} + 2 x^{14} + 28 x^{13} - 106 x^{12} + 136 x^{11} + 102 x^{10} - 588 x^{9} + 1150 x^{8} - 1908 x^{7} + 3030 x^{6} - 4196 x^{5} + 4622 x^{4} - 3632 x^{3} + 1970 x^{2} - 676 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(891610044825600000000=2^{32}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{3}{10} a + \frac{3}{10}$, $\frac{1}{10} a^{10} + \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{3}{10}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{3}{10}$, $\frac{1}{30} a^{12} + \frac{1}{30} a^{11} + \frac{1}{30} a^{10} - \frac{1}{30} a^{9} + \frac{2}{15} a^{8} + \frac{1}{3} a^{7} + \frac{4}{15} a^{6} - \frac{4}{15} a^{5} + \frac{13}{30} a^{4} + \frac{1}{6} a^{3} + \frac{13}{30} a^{2} + \frac{13}{30} a + \frac{1}{3}$, $\frac{1}{390} a^{13} + \frac{1}{65} a^{12} + \frac{7}{390} a^{10} - \frac{1}{39} a^{9} + \frac{3}{65} a^{8} + \frac{7}{39} a^{7} - \frac{86}{195} a^{6} - \frac{3}{130} a^{5} + \frac{56}{195} a^{4} + \frac{1}{195} a^{3} + \frac{33}{130} a^{2} - \frac{4}{65} a - \frac{1}{3}$, $\frac{1}{390} a^{14} + \frac{1}{130} a^{12} + \frac{7}{390} a^{11} - \frac{1}{30} a^{10} + \frac{1}{390} a^{8} - \frac{23}{195} a^{7} + \frac{3}{130} a^{6} + \frac{44}{195} a^{5} - \frac{17}{78} a^{4} + \frac{29}{130} a^{3} - \frac{37}{130} a^{2} + \frac{7}{195} a - \frac{1}{2}$, $\frac{1}{39037257483510} a^{15} - \frac{3086986439}{13012419161170} a^{14} - \frac{7766113814}{6506209580585} a^{13} - \frac{400213880881}{39037257483510} a^{12} + \frac{222764961561}{6506209580585} a^{11} + \frac{1827283680397}{39037257483510} a^{10} + \frac{215488809566}{6506209580585} a^{9} + \frac{143898584163}{6506209580585} a^{8} - \frac{17359232036747}{39037257483510} a^{7} - \frac{2796565613449}{13012419161170} a^{6} - \frac{2916937026976}{6506209580585} a^{5} - \frac{2260822316671}{7807451496702} a^{4} + \frac{642272990356}{1501432980135} a^{3} + \frac{4979288226293}{13012419161170} a^{2} - \frac{2759549302036}{19518628741755} a + \frac{614996918966}{1501432980135}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{109104004}{21567545571} a^{15} + \frac{253053373}{21567545571} a^{14} + \frac{426794074}{21567545571} a^{13} - \frac{5983222865}{43135091142} a^{12} + \frac{6193269752}{21567545571} a^{11} + \frac{547185224}{7189181857} a^{10} - \frac{25125451277}{21567545571} a^{9} + \frac{63591464527}{43135091142} a^{8} - \frac{10931726444}{7189181857} a^{7} + \frac{62820357670}{21567545571} a^{6} - \frac{83325512836}{21567545571} a^{5} + \frac{48217007821}{14378363714} a^{4} - \frac{16923945370}{21567545571} a^{3} - \frac{70483134053}{21567545571} a^{2} + \frac{5008488641}{1659041967} a - \frac{3886143671}{3318083934} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8516.64407648 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T35):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), 4.2.3600.1 x2, 4.0.2880.1 x2, \(\Q(i, \sqrt{5})\), 8.0.5971968000.1 x2, 8.0.5971968000.2 x2, 8.0.207360000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |