Normalized defining polynomial
\( x^{16} + 13 x^{14} + 63 x^{12} - 10 x^{11} + 145 x^{10} - 70 x^{9} + 177 x^{8} - 134 x^{7} + 152 x^{6} - 86 x^{5} + 90 x^{4} - 28 x^{3} + 19 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(891382839487561728=2^{16}\cdot 3^{8}\cdot 73^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1025654525} a^{15} - \frac{154374329}{1025654525} a^{14} - \frac{208022296}{1025654525} a^{13} - \frac{303673066}{1025654525} a^{12} + \frac{3020424}{44593675} a^{11} - \frac{71943918}{1025654525} a^{10} + \frac{28120831}{146522075} a^{9} - \frac{63714509}{146522075} a^{8} - \frac{331629821}{1025654525} a^{7} - \frac{106903}{695359} a^{6} - \frac{41026973}{1025654525} a^{5} + \frac{375684731}{1025654525} a^{4} - \frac{2816983}{44593675} a^{3} + \frac{274654633}{1025654525} a^{2} + \frac{41766012}{1025654525} a - \frac{344326281}{1025654525}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{586970772}{1025654525} a^{15} + \frac{220723162}{1025654525} a^{14} + \frac{7612267813}{1025654525} a^{13} + \frac{2820312273}{1025654525} a^{12} + \frac{1598208853}{44593675} a^{11} + \frac{7434084254}{1025654525} a^{10} + \frac{11709985782}{146522075} a^{9} - \frac{1647390648}{146522075} a^{8} + \frac{87403995538}{1025654525} a^{7} - \frac{29548460}{695359} a^{6} + \frac{62428652969}{1025654525} a^{5} - \frac{20653639868}{1025654525} a^{4} + \frac{1698573699}{44593675} a^{3} - \frac{1939694299}{1025654525} a^{2} + \frac{7180801239}{1025654525} a - \frac{2874020682}{1025654525} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1157.04394068 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1163 are not computed |
| Character table for t16n1163 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 8.0.1513728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||