Normalized defining polynomial
\( x^{16} + 24 x^{14} - 8 x^{13} + 154 x^{12} + 56 x^{11} + 592 x^{10} + 168 x^{9} + 1257 x^{8} + 1424 x^{7} + 616 x^{6} + 2544 x^{5} + 4738 x^{4} + 800 x^{3} + 128 x^{2} - 1984 x + 961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(89060441849856000000000000=2^{52}\cdot 3^{4}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} + \frac{14}{31} a^{13} + \frac{3}{31} a^{12} + \frac{3}{31} a^{11} + \frac{10}{31} a^{10} + \frac{10}{31} a^{9} - \frac{12}{31} a^{8} - \frac{14}{31} a^{6} - \frac{12}{31} a^{5} + \frac{14}{31} a^{4} + \frac{12}{31} a^{3} + \frac{8}{31} a^{2} + \frac{13}{31} a$, $\frac{1}{1644171511604316152403327716561} a^{15} + \frac{15800891365819971819883116597}{1644171511604316152403327716561} a^{14} - \frac{675645329591157883418084827544}{1644171511604316152403327716561} a^{13} + \frac{299355015177678067569123539352}{1644171511604316152403327716561} a^{12} + \frac{439081261889283581034384652027}{1644171511604316152403327716561} a^{11} + \frac{615229778919412388242179407032}{1644171511604316152403327716561} a^{10} + \frac{600703737687513143027699423923}{1644171511604316152403327716561} a^{9} - \frac{352541078153959870647627259656}{1644171511604316152403327716561} a^{8} - \frac{788579823156503138744065960825}{1644171511604316152403327716561} a^{7} - \frac{730615829391028861289740542702}{1644171511604316152403327716561} a^{6} - \frac{21073701499888138268233338771}{1644171511604316152403327716561} a^{5} - \frac{414920239213989685872454587149}{1644171511604316152403327716561} a^{4} + \frac{4750913994967892331316819964}{53037790696913424271075087631} a^{3} - \frac{143372300416980059573323263359}{1644171511604316152403327716561} a^{2} + \frac{75154410025975742996315589581}{1644171511604316152403327716561} a + \frac{13171639441081985375895685695}{53037790696913424271075087631}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113788.60182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4):C_4$ (as 16T17):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4^2:C_2$ |
| Character table for $C_4^2:C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.256000.4, \(\Q(\sqrt{2}, \sqrt{5})\), 4.0.256000.2, 8.0.65536000000.1, 8.0.5898240000.1, 8.8.589824000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||