Properties

Label 16.0.88857328708...4417.6
Degree $16$
Signature $[0, 8]$
Discriminant $43^{8}\cdot 97^{9}$
Root discriminant $85.96$
Ramified primes $43, 97$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_4.D_4:C_4$ (as 16T260)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2766731, -8914295, 11842379, -8462844, 4096231, -2260599, 1473030, -603079, 54019, 53819, -18728, 214, 777, -73, -1, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - x^14 - 73*x^13 + 777*x^12 + 214*x^11 - 18728*x^10 + 53819*x^9 + 54019*x^8 - 603079*x^7 + 1473030*x^6 - 2260599*x^5 + 4096231*x^4 - 8462844*x^3 + 11842379*x^2 - 8914295*x + 2766731)
 
gp: K = bnfinit(x^16 - 5*x^15 - x^14 - 73*x^13 + 777*x^12 + 214*x^11 - 18728*x^10 + 53819*x^9 + 54019*x^8 - 603079*x^7 + 1473030*x^6 - 2260599*x^5 + 4096231*x^4 - 8462844*x^3 + 11842379*x^2 - 8914295*x + 2766731, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} - x^{14} - 73 x^{13} + 777 x^{12} + 214 x^{11} - 18728 x^{10} + 53819 x^{9} + 54019 x^{8} - 603079 x^{7} + 1473030 x^{6} - 2260599 x^{5} + 4096231 x^{4} - 8462844 x^{3} + 11842379 x^{2} - 8914295 x + 2766731 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8885732870807191282905358804417=43^{8}\cdot 97^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $85.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $43, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{27638757264825757990813314484748969077} a^{15} + \frac{883843062271322712914676490048901623}{27638757264825757990813314484748969077} a^{14} - \frac{12340670377224430757243874925761703057}{27638757264825757990813314484748969077} a^{13} + \frac{7195867097808723768894425952983647905}{27638757264825757990813314484748969077} a^{12} - \frac{11781173750409453378567872234146078414}{27638757264825757990813314484748969077} a^{11} + \frac{1054116298575556986540524453454778937}{27638757264825757990813314484748969077} a^{10} + \frac{12726264036871449402823523021780921868}{27638757264825757990813314484748969077} a^{9} - \frac{7590700003794158859699113089829395459}{27638757264825757990813314484748969077} a^{8} + \frac{8371684885714888013515845332762627258}{27638757264825757990813314484748969077} a^{7} - \frac{6798390422045805721615184291067404427}{27638757264825757990813314484748969077} a^{6} + \frac{12338028107545897488944944843008555027}{27638757264825757990813314484748969077} a^{5} - \frac{8265631686214718137914452107983425302}{27638757264825757990813314484748969077} a^{4} - \frac{8556443943704418412324633904879086667}{27638757264825757990813314484748969077} a^{3} + \frac{13204378865393407799710258777789690670}{27638757264825757990813314484748969077} a^{2} + \frac{13268258121897533411350423030485518870}{27638757264825757990813314484748969077} a + \frac{1090925167414009638730481765784468713}{2512614296802341635528483134977179007}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 600851966.015 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.D_4:C_4$ (as 16T260):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 32 conjugacy class representatives for $C_4.D_4:C_4$
Character table for $C_4.D_4:C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-43}) \), 4.0.179353.1, 8.0.3120247365073.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$43$43.8.4.1$x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
43.8.4.1$x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.2.1.1$x^{2} - 97$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.1.1$x^{2} - 97$$2$$1$$1$$C_2$$[\ ]_{2}$
97.8.7.1$x^{8} - 97$$8$$1$$7$$C_8$$[\ ]_{8}$