Normalized defining polynomial
\( x^{16} - x^{15} - 46 x^{14} + 201 x^{13} + 1710 x^{12} - 4394 x^{11} - 24509 x^{10} + 91982 x^{9} + 363862 x^{8} - 670143 x^{7} - 1709406 x^{6} + 16998374 x^{5} + 87471399 x^{4} + 193906446 x^{3} + 244084510 x^{2} + 171975278 x + 52726789 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(888489374058862559333388518553=3^{12}\cdot 73^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} - \frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{12} - \frac{3}{14} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{7} + \frac{3}{14} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{5}{14} a^{3} - \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{1}{2}$, $\frac{1}{686} a^{13} - \frac{17}{686} a^{12} + \frac{5}{343} a^{11} - \frac{3}{686} a^{10} - \frac{195}{686} a^{9} + \frac{3}{49} a^{8} - \frac{39}{686} a^{7} + \frac{291}{686} a^{6} + \frac{86}{343} a^{5} - \frac{83}{686} a^{4} + \frac{11}{98} a^{3} + \frac{157}{343} a^{2} + \frac{249}{686} a - \frac{73}{686}$, $\frac{1}{4802} a^{14} + \frac{113}{4802} a^{12} - \frac{29}{4802} a^{11} - \frac{1152}{2401} a^{10} + \frac{353}{4802} a^{9} - \frac{501}{4802} a^{8} + \frac{59}{2401} a^{7} + \frac{317}{4802} a^{6} + \frac{1665}{4802} a^{5} - \frac{1010}{2401} a^{4} + \frac{643}{4802} a^{3} - \frac{979}{4802} a^{2} + \frac{365}{2401} a + \frac{1699}{4802}$, $\frac{1}{2932444673533221479979138668886358140811702373522} a^{15} + \frac{35470276530376423407834386703972246608882515}{1466222336766610739989569334443179070405851186761} a^{14} + \frac{389633470388010874857342723173288828120895825}{1466222336766610739989569334443179070405851186761} a^{13} - \frac{21495517511472910748552072713519975708677752788}{1466222336766610739989569334443179070405851186761} a^{12} - \frac{59270670416420260273874244725794322481806638202}{1466222336766610739989569334443179070405851186761} a^{11} - \frac{98522953481672034980544237873985118520178452800}{209460333823801534284224190634739867200835883823} a^{10} + \frac{265902981700244381902565350935877883361479296599}{1466222336766610739989569334443179070405851186761} a^{9} - \frac{58684723902655456521102782533410880835735270301}{1466222336766610739989569334443179070405851186761} a^{8} - \frac{279397853172911024593291275066447530847625154690}{1466222336766610739989569334443179070405851186761} a^{7} + \frac{724946613249323365498680016271005192891230551043}{1466222336766610739989569334443179070405851186761} a^{6} - \frac{65415044404796777702527175996860138723983582766}{209460333823801534284224190634739867200835883823} a^{5} + \frac{179641103114731852222707406905355242177945031581}{1466222336766610739989569334443179070405851186761} a^{4} - \frac{421853304195063039344463646870855406349603239850}{1466222336766610739989569334443179070405851186761} a^{3} + \frac{507130639952605657943458607191416762627326834091}{1466222336766610739989569334443179070405851186761} a^{2} + \frac{134770554847192210097100513498657258147519859037}{1466222336766610739989569334443179070405851186761} a + \frac{1441207422217304340561029389744743994503747391707}{2932444673533221479979138668886358140811702373522}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{65908090403000873002117768476}{59564524585773750681730461592764091} a^{15} - \frac{114769637318812829413745304836}{59564524585773750681730461592764091} a^{14} - \frac{3012338388142945471333619242301}{59564524585773750681730461592764091} a^{13} + \frac{15790080921332858261261616030521}{59564524585773750681730461592764091} a^{12} + \frac{103083970668727903956542359189944}{59564524585773750681730461592764091} a^{11} - \frac{387953221952956007224090205884120}{59564524585773750681730461592764091} a^{10} - \frac{1365676293551380896973885132534974}{59564524585773750681730461592764091} a^{9} + \frac{7575997703024941563252716694791346}{59564524585773750681730461592764091} a^{8} + \frac{18250246830818473863411956190684547}{59564524585773750681730461592764091} a^{7} - \frac{64982773509076867111670822221118402}{59564524585773750681730461592764091} a^{6} - \frac{61157261301212834421171147594016501}{59564524585773750681730461592764091} a^{5} + \frac{1222241474068323507215709015400985579}{59564524585773750681730461592764091} a^{4} + \frac{4752226755114898827316182574942700579}{59564524585773750681730461592764091} a^{3} + \frac{8340627074692923594364674386504859446}{59564524585773750681730461592764091} a^{2} + \frac{7907130331792393887310858640367824173}{59564524585773750681730461592764091} a + \frac{3303445290857451040591528007299965025}{59564524585773750681730461592764091} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 381368738.095 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.657.1, 8.0.167918799033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $73$ | 73.8.7.7 | $x^{8} + 228125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.6.3 | $x^{8} - 73 x^{4} + 58619$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |