Normalized defining polynomial
\( x^{16} - 3 x^{15} - 41 x^{14} + 151 x^{13} + 1726 x^{12} + 1245 x^{11} - 10904 x^{10} + 16035 x^{9} + 190159 x^{8} + 341342 x^{7} - 115337 x^{6} - 1549502 x^{5} - 1969087 x^{4} + 823765 x^{3} + 1279138 x^{2} + 2209756 x + 7274677 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(888489374058862559333388518553=3^{12}\cdot 73^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{73281642747697193787200847432243051336506705321572078} a^{15} - \frac{8344707612578263025474487186279356754683701635689669}{36640821373848596893600423716121525668253352660786039} a^{14} + \frac{7355255063879048808347520439901894389435755243661215}{73281642747697193787200847432243051336506705321572078} a^{13} + \frac{93329459495823157271598690853987753200633116660414}{2818524721065276684123109516624732743711796358522003} a^{12} - \frac{770585290893292640480295507084478531540692469303343}{5234403053406942413371489102303075095464764665826577} a^{11} + \frac{8200105235492320813422199126447219991866455927515426}{36640821373848596893600423716121525668253352660786039} a^{10} - \frac{2623759061608475740718470792613108017443313851594202}{36640821373848596893600423716121525668253352660786039} a^{9} - \frac{15781301210250611423615535047008808625360957100912453}{73281642747697193787200847432243051336506705321572078} a^{8} - \frac{2096300701918246686662100861236728425991100727031406}{36640821373848596893600423716121525668253352660786039} a^{7} + \frac{14235922608718514312730010736721893382971496235022371}{36640821373848596893600423716121525668253352660786039} a^{6} + \frac{312911290232862955323595715539372087371809575624842}{1181961979801567641729045926326500828008172666476969} a^{5} + \frac{3665511400210713434729983229412615095686367429598090}{36640821373848596893600423716121525668253352660786039} a^{4} + \frac{36429378032703579816353535476810297049902995888194793}{73281642747697193787200847432243051336506705321572078} a^{3} + \frac{2547591975585049882544609063648872103278707354219136}{5234403053406942413371489102303075095464764665826577} a^{2} + \frac{184023849442980761541121371680570690209167775322865}{402646388723610954874729930946390391958828051217429} a + \frac{487878075372787101762152146483177553841303269417675}{2363923959603135283458091852653001656016345332953938}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{383193680935110737903130285}{226874586663317278495723029519958} a^{15} + \frac{2122539536700367523704458897}{226874586663317278495723029519958} a^{14} + \frac{10623218160707013721924415209}{226874586663317278495723029519958} a^{13} - \frac{43144861001028287079392297706}{113437293331658639247861514759979} a^{12} - \frac{225573719161968420261824902251}{113437293331658639247861514759979} a^{11} + \frac{726946916764553446613736639089}{226874586663317278495723029519958} a^{10} + \frac{2716878065348317920096276097169}{226874586663317278495723029519958} a^{9} - \frac{13232343007499669411633323870019}{226874586663317278495723029519958} a^{8} - \frac{20471090070574333253425978927344}{113437293331658639247861514759979} a^{7} - \frac{9062760119135104151154610160044}{113437293331658639247861514759979} a^{6} + \frac{127363770252001588496193268689475}{226874586663317278495723029519958} a^{5} + \frac{326764542020309378165986440876779}{226874586663317278495723029519958} a^{4} - \frac{83931809793270766264191556070777}{226874586663317278495723029519958} a^{3} - \frac{142504817766679494047003403392487}{113437293331658639247861514759979} a^{2} + \frac{100752231544348269579606696117207}{113437293331658639247861514759979} a - \frac{568076104555547188344362018135045}{113437293331658639247861514759979} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 322311080.328 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.657.1, 8.0.167918799033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $73$ | 73.8.7.5 | $x^{8} + 365$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.6.4 | $x^{8} + 2336 x^{4} + 7092899$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |