Properties

Label 16.0.88613382400...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{10}\cdot 61^{4}$
Root discriminant $15.28$
Ramified primes $2, 5, 61$
Class number $1$
Class group Trivial
Galois group $C_2^4.C_2^3$ (as 16T217)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, -40, 130, -210, 144, 46, -134, 10, 143, -126, 0, 68, -41, -2, 13, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 13*x^14 - 2*x^13 - 41*x^12 + 68*x^11 - 126*x^9 + 143*x^8 + 10*x^7 - 134*x^6 + 46*x^5 + 144*x^4 - 210*x^3 + 130*x^2 - 40*x + 5)
 
gp: K = bnfinit(x^16 - 6*x^15 + 13*x^14 - 2*x^13 - 41*x^12 + 68*x^11 - 126*x^9 + 143*x^8 + 10*x^7 - 134*x^6 + 46*x^5 + 144*x^4 - 210*x^3 + 130*x^2 - 40*x + 5, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 13 x^{14} - 2 x^{13} - 41 x^{12} + 68 x^{11} - 126 x^{9} + 143 x^{8} + 10 x^{7} - 134 x^{6} + 46 x^{5} + 144 x^{4} - 210 x^{3} + 130 x^{2} - 40 x + 5 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8861338240000000000=2^{16}\cdot 5^{10}\cdot 61^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{205} a^{14} - \frac{13}{205} a^{13} - \frac{94}{205} a^{12} - \frac{10}{41} a^{11} + \frac{61}{205} a^{10} - \frac{94}{205} a^{9} + \frac{12}{41} a^{8} + \frac{26}{205} a^{7} - \frac{29}{205} a^{6} - \frac{3}{41} a^{5} - \frac{27}{205} a^{4} - \frac{15}{41} a^{3} + \frac{14}{41} a^{2} + \frac{1}{41} a - \frac{6}{41}$, $\frac{1}{5945} a^{15} - \frac{4}{5945} a^{14} - \frac{1851}{5945} a^{13} + \frac{2589}{5945} a^{12} + \frac{1251}{5945} a^{11} + \frac{50}{1189} a^{10} + \frac{239}{5945} a^{9} + \frac{2411}{5945} a^{8} + \frac{3}{29} a^{7} + \frac{544}{5945} a^{6} + \frac{1273}{5945} a^{5} + \frac{707}{5945} a^{4} - \frac{367}{1189} a^{3} - \frac{283}{1189} a^{2} - \frac{366}{1189} a - \frac{218}{1189}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1500}{41} a^{15} + \frac{8042}{41} a^{14} - \frac{14348}{41} a^{13} - \frac{6239}{41} a^{12} + \frac{57624}{41} a^{11} - \frac{65077}{41} a^{10} - \frac{42089}{41} a^{9} + \frac{162523}{41} a^{8} - \frac{110088}{41} a^{7} - \frac{86665}{41} a^{6} + \frac{146155}{41} a^{5} + \frac{25437}{41} a^{4} - \frac{200745}{41} a^{3} + \frac{186125}{41} a^{2} - \frac{74405}{41} a + \frac{11353}{41} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1649.96109527 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3$ (as 16T217):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 32 conjugacy class representatives for $C_2^4.C_2^3$
Character table for $C_2^4.C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(i, \sqrt{5})\), 8.0.48800000.2, 8.0.48800000.1, 8.0.595360000.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$61$61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.4.2.1$x^{4} + 183 x^{2} + 14884$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
61.4.2.1$x^{4} + 183 x^{2} + 14884$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$