Properties

Label 16.0.88295032325...5913.2
Degree $16$
Signature $[0, 8]$
Discriminant $13^{15}\cdot 29^{7}$
Root discriminant $48.32$
Ramified primes $13, 29$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 16T1192

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![207301, 434411, 766481, 742654, 554359, 370526, 174395, 80171, 26871, 6357, 1976, -364, 104, -90, 14, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 14*x^14 - 90*x^13 + 104*x^12 - 364*x^11 + 1976*x^10 + 6357*x^9 + 26871*x^8 + 80171*x^7 + 174395*x^6 + 370526*x^5 + 554359*x^4 + 742654*x^3 + 766481*x^2 + 434411*x + 207301)
 
gp: K = bnfinit(x^16 - 4*x^15 + 14*x^14 - 90*x^13 + 104*x^12 - 364*x^11 + 1976*x^10 + 6357*x^9 + 26871*x^8 + 80171*x^7 + 174395*x^6 + 370526*x^5 + 554359*x^4 + 742654*x^3 + 766481*x^2 + 434411*x + 207301, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 14 x^{14} - 90 x^{13} + 104 x^{12} - 364 x^{11} + 1976 x^{10} + 6357 x^{9} + 26871 x^{8} + 80171 x^{7} + 174395 x^{6} + 370526 x^{5} + 554359 x^{4} + 742654 x^{3} + 766481 x^{2} + 434411 x + 207301 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(882950323258772752350175913=13^{15}\cdot 29^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.32$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{21236098852620168675429474337882462989} a^{15} + \frac{1113674552100416134625523694513193468}{7078699617540056225143158112627487663} a^{14} + \frac{10287392539010295738788449580366968229}{21236098852620168675429474337882462989} a^{13} - \frac{4721450575869162328216554262374052141}{21236098852620168675429474337882462989} a^{12} - \frac{9756743282209052225928777415651731230}{21236098852620168675429474337882462989} a^{11} - \frac{3257170474679426734697312888462566425}{7078699617540056225143158112627487663} a^{10} + \frac{9275016569985055283917352335371873926}{21236098852620168675429474337882462989} a^{9} - \frac{7203728299195084466087399470664049082}{21236098852620168675429474337882462989} a^{8} + \frac{8706389101285824283112824521256742705}{21236098852620168675429474337882462989} a^{7} - \frac{948782840231065524953947392915295130}{21236098852620168675429474337882462989} a^{6} - \frac{2213397140676805747823047323330521103}{7078699617540056225143158112627487663} a^{5} + \frac{742764650079427217262940057784488514}{21236098852620168675429474337882462989} a^{4} - \frac{2060419051712105048204864323487506247}{7078699617540056225143158112627487663} a^{3} + \frac{2473901521400586119266432948758238636}{21236098852620168675429474337882462989} a^{2} - \frac{2241743431799229390510112499830973600}{7078699617540056225143158112627487663} a + \frac{8421782084631080933419996351972038056}{21236098852620168675429474337882462989}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1669567.6745 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1192:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 88 conjugacy class representatives for t16n1192 are not computed
Character table for t16n1192 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.1819706993.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
$29$29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.4.3.2$x^{4} - 116$$4$$1$$3$$C_4$$[\ ]_{4}$