Normalized defining polynomial
\( x^{16} - 5 x^{15} - 4 x^{14} + 19 x^{13} + 263 x^{12} - 722 x^{11} + 3439 x^{10} - 12743 x^{9} + 43024 x^{8} - 142003 x^{7} + 290653 x^{6} - 578058 x^{5} + 1271664 x^{4} - 1898648 x^{3} + 1821584 x^{2} - 1194368 x + 472832 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8782328919028941504502068196249=67^{2}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{126016} a^{14} - \frac{7515}{126016} a^{13} - \frac{601}{63008} a^{12} + \frac{1415}{126016} a^{11} + \frac{813}{126016} a^{10} + \frac{181}{3938} a^{9} + \frac{1767}{126016} a^{8} + \frac{25215}{126016} a^{7} - \frac{1405}{63008} a^{6} + \frac{30241}{126016} a^{5} + \frac{20167}{126016} a^{4} + \frac{7259}{31504} a^{3} - \frac{3361}{7876} a^{2} - \frac{5947}{15752} a + \frac{1527}{3938}$, $\frac{1}{74819758239915265488215478193372672} a^{15} - \frac{215078930014418502718350598183}{74819758239915265488215478193372672} a^{14} + \frac{908553771123652545120181017011605}{37409879119957632744107739096686336} a^{13} + \frac{2294680634552658769279904432257727}{74819758239915265488215478193372672} a^{12} - \frac{1299695411367156286085547747809687}{74819758239915265488215478193372672} a^{11} - \frac{406688533492336709028892521684769}{18704939559978816372053869548343168} a^{10} - \frac{7360674958349193200627102344061513}{74819758239915265488215478193372672} a^{9} - \frac{2308233738652879454453987826863125}{74819758239915265488215478193372672} a^{8} + \frac{4476484864643758420386049557528621}{37409879119957632744107739096686336} a^{7} - \frac{8013282581301081461703286286084199}{74819758239915265488215478193372672} a^{6} - \frac{12816716321022690675653570398145205}{74819758239915265488215478193372672} a^{5} + \frac{191136003346714832491058798354929}{1169058722498676023253366846771448} a^{4} - \frac{2114116867251630129898430652497925}{4676234889994704093013467387085792} a^{3} - \frac{4369091593204939205617756892160607}{9352469779989408186026934774171584} a^{2} - \frac{105468341920109620048005456557611}{584529361249338011626683423385724} a + \frac{134483787720283576484417810513335}{584529361249338011626683423385724}$
Class group and class number
$C_{339}$, which has order $339$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96345227.2282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.2.2963499438000443.1, 8.0.44231334895529.1, 8.6.33297746494387.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89 | Data not computed | ||||||