Normalized defining polynomial
\( x^{16} - 3 x^{15} + 177 x^{14} - 652 x^{13} + 12492 x^{12} - 48379 x^{11} + 504319 x^{10} - 2195433 x^{9} + 13672084 x^{8} - 78136205 x^{7} + 244603409 x^{6} - 998379714 x^{5} + 4521909355 x^{4} - 12093973889 x^{3} + 20305914608 x^{2} - 24281793064 x + 15386186173 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{206} a^{13} + \frac{23}{206} a^{12} + \frac{42}{103} a^{11} - \frac{95}{206} a^{10} + \frac{39}{206} a^{9} - \frac{6}{103} a^{8} - \frac{17}{103} a^{7} - \frac{14}{103} a^{6} - \frac{18}{103} a^{5} - \frac{35}{206} a^{4} + \frac{95}{206} a^{3} - \frac{33}{206} a^{2} - \frac{39}{103} a + \frac{45}{206}$, $\frac{1}{206} a^{14} - \frac{33}{206} a^{12} + \frac{33}{206} a^{11} - \frac{21}{103} a^{10} - \frac{85}{206} a^{9} + \frac{18}{103} a^{8} - \frac{35}{103} a^{7} - \frac{5}{103} a^{6} - \frac{31}{206} a^{5} + \frac{38}{103} a^{4} + \frac{24}{103} a^{3} + \frac{63}{206} a^{2} - \frac{15}{206} a - \frac{5}{206}$, $\frac{1}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{15} + \frac{125858481541907834433719675404337685306709249973411405954535243584331}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{14} - \frac{194381248566220758583718155807568396635935168977381987269128258052865}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{13} - \frac{31012942346398309921882818127224850821868853994380907862162640247016612}{168114252786034050348752429346530807205432141934471843317866567703578639} a^{12} + \frac{153304867815580155934502529884059179520710255258658394963446025114940269}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{11} - \frac{78449503145398789324864065830697233253864538185949767727262714355245725}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{10} + \frac{123110676296211085129583487285678586830258285903543800936743514733320317}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{9} - \frac{17713966102003803756026505912901127818962806835116621342144520676750010}{168114252786034050348752429346530807205432141934471843317866567703578639} a^{8} + \frac{145669531481300377436673359598452858948529384681652741543152953920599}{1632177211514893692706334265500299099081865455674483915707442404889113} a^{7} + \frac{22546015104109509682964961235632206642777081044784615709918033893250861}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{6} - \frac{60711830132122356007953112866391234117941545213735360418110995806830521}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{5} + \frac{47166149218019358697244725677428054496679997173789125375280838994405858}{168114252786034050348752429346530807205432141934471843317866567703578639} a^{4} - \frac{61109719720819480017558727638104146559480041226263039469267221673013261}{336228505572068100697504858693061614410864283868943686635733135407157278} a^{3} - \frac{28242201650598369013210667010658190075560863508325523224713710262044114}{168114252786034050348752429346530807205432141934471843317866567703578639} a^{2} + \frac{7880399046434316867295627023647076327187021931814952704257528401139894}{168114252786034050348752429346530807205432141934471843317866567703578639} a - \frac{153622141904299432521140178192789627003329051195548282799403660404771783}{336228505572068100697504858693061614410864283868943686635733135407157278}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{15844}$, which has order $253504$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1675810.87182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97 | Data not computed | ||||||