Normalized defining polynomial
\( x^{16} - 6 x^{15} + 56 x^{14} - 236 x^{13} + 1142 x^{12} - 3414 x^{11} + 11058 x^{10} - 21298 x^{9} + 56291 x^{8} - 43862 x^{7} + 166514 x^{6} + 37678 x^{5} + 259628 x^{4} + 170956 x^{3} + 140326 x^{2} + 31410 x + 13781 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8739319761101494681600000000=2^{28}\cdot 5^{8}\cdot 11^{6}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{1547451103003474189895094211541147524325} a^{15} - \frac{7367017484959933080265092720439193182}{309490220600694837979018842308229504865} a^{14} - \frac{413249793340117189958519755530945463884}{1547451103003474189895094211541147524325} a^{13} + \frac{133489044919384779832310898740212141219}{309490220600694837979018842308229504865} a^{12} - \frac{597264158648127772448731926005192978548}{1547451103003474189895094211541147524325} a^{11} - \frac{49305660510242490458005202185448603182}{1547451103003474189895094211541147524325} a^{10} - \frac{2898943394070012037841906111648115957}{11295263525572804305803607383512025725} a^{9} - \frac{14759601734578675624170317652701295238}{81444794894919694205004958502165659175} a^{8} + \frac{403518876314057590576287228500579055489}{1547451103003474189895094211541147524325} a^{7} + \frac{638935088925365749398067930273233121377}{1547451103003474189895094211541147524325} a^{6} - \frac{342359524252712166708087621541826006519}{1547451103003474189895094211541147524325} a^{5} + \frac{328022692134061509915525647079186247694}{1547451103003474189895094211541147524325} a^{4} - \frac{489457178843607465344061139629398005963}{1547451103003474189895094211541147524325} a^{3} - \frac{511047901466001159260252804505337122127}{1547451103003474189895094211541147524325} a^{2} + \frac{499516435010952448154461691954726802339}{1547451103003474189895094211541147524325} a - \frac{408567116914474000774878742760631784081}{1547451103003474189895094211541147524325}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1509026.65444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n868 are not computed |
| Character table for t16n868 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.4400.1, 4.0.83600.1, 4.4.7600.1, 8.0.111823360000.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |