Normalized defining polynomial
\( x^{16} - 6 x^{15} + 13 x^{14} - 2 x^{13} - 24 x^{12} + 2 x^{11} + 99 x^{10} - 150 x^{9} + 192 x^{8} - 274 x^{7} + 267 x^{6} - 222 x^{5} + 219 x^{4} - 248 x^{3} + 210 x^{2} - 104 x + 28 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8718704856053531541504=2^{28}\cdot 3^{4}\cdot 17^{2}\cdot 193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{28} a^{12} - \frac{3}{14} a^{11} - \frac{1}{14} a^{10} - \frac{1}{4} a^{8} - \frac{3}{14} a^{7} - \frac{1}{14} a^{6} - \frac{1}{7} a^{5} + \frac{1}{28} a^{4} + \frac{1}{14} a^{3} + \frac{3}{14} a^{2} + \frac{1}{7} a$, $\frac{1}{28} a^{13} + \frac{1}{7} a^{11} + \frac{1}{14} a^{10} - \frac{1}{4} a^{9} - \frac{3}{14} a^{8} + \frac{1}{7} a^{7} - \frac{1}{14} a^{6} + \frac{5}{28} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{168} a^{14} - \frac{1}{168} a^{13} - \frac{1}{56} a^{12} - \frac{5}{28} a^{11} + \frac{11}{56} a^{10} + \frac{29}{168} a^{9} - \frac{11}{168} a^{8} - \frac{5}{42} a^{7} - \frac{1}{8} a^{6} - \frac{13}{56} a^{5} - \frac{27}{56} a^{4} + \frac{13}{28} a^{3} + \frac{9}{28} a^{2} + \frac{1}{42} a - \frac{1}{6}$, $\frac{1}{485222136} a^{15} + \frac{348353}{161740712} a^{14} - \frac{8238613}{485222136} a^{13} - \frac{570953}{80870356} a^{12} + \frac{4994481}{23105816} a^{11} - \frac{59054647}{485222136} a^{10} + \frac{24667745}{161740712} a^{9} + \frac{11776}{8664681} a^{8} + \frac{23205043}{485222136} a^{7} + \frac{15324635}{161740712} a^{6} - \frac{33914949}{161740712} a^{5} - \frac{35094261}{80870356} a^{4} + \frac{33097353}{80870356} a^{3} + \frac{28139029}{121305534} a^{2} + \frac{179855}{685342} a + \frac{3073384}{8664681}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11917.5605387 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 76 conjugacy class representatives for t16n1116 are not computed |
| Character table for t16n1116 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.12352.2, 8.0.5492588544.3, 8.0.10374889472.1, 8.0.23343501312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $193$ | 193.4.2.1 | $x^{4} + 1737 x^{2} + 931225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 193.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 193.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 193.4.2.1 | $x^{4} + 1737 x^{2} + 931225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |