Normalized defining polynomial
\( x^{16} - 2 x^{15} + 13 x^{14} - 30 x^{13} + 93 x^{12} - 194 x^{11} + 432 x^{10} - 792 x^{9} + 1405 x^{8} - 2132 x^{7} + 2836 x^{6} - 3154 x^{5} + 2877 x^{4} - 2094 x^{3} + 1079 x^{2} - 338 x + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87071293440000000000=2^{24}\cdot 3^{12}\cdot 5^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{13} - \frac{3}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{87494198807029} a^{15} + \frac{3991829672123}{87494198807029} a^{14} - \frac{17311857521527}{87494198807029} a^{13} + \frac{6309317806620}{87494198807029} a^{12} - \frac{23238458211341}{87494198807029} a^{11} + \frac{5033192533890}{12499171258147} a^{10} + \frac{19694936830364}{87494198807029} a^{9} + \frac{27191889042840}{87494198807029} a^{8} - \frac{14196289389504}{87494198807029} a^{7} - \frac{16614799903354}{87494198807029} a^{6} + \frac{5046906938380}{87494198807029} a^{5} - \frac{5641612755917}{87494198807029} a^{4} + \frac{40155416098632}{87494198807029} a^{3} + \frac{20494775119729}{87494198807029} a^{2} + \frac{5691226661717}{87494198807029} a - \frac{384685605023}{1785595894021}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3784467282}{431339503} a^{15} - \frac{5033084806}{431339503} a^{14} + \frac{45822138150}{431339503} a^{13} - \frac{82830499518}{431339503} a^{12} + \frac{296415049040}{431339503} a^{11} - \frac{76506642239}{61619929} a^{10} + \frac{1275838724620}{431339503} a^{9} - \frac{2142203113543}{431339503} a^{8} + \frac{3881038358038}{431339503} a^{7} - \frac{5467080921024}{431339503} a^{6} + \frac{7067558043846}{431339503} a^{5} - \frac{7198434673491}{431339503} a^{4} + \frac{6061747508728}{431339503} a^{3} - \frac{3860456614958}{431339503} a^{2} + \frac{1494645655596}{431339503} a - \frac{5635864523}{8802847} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5789.2337068 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_4\times C_8):C_2$ (as 16T114):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_4\times C_8):C_2$ |
| Character table for $(C_4\times C_8):C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 8.0.8294400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 5.8.6.4 | $x^{8} - 5 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |