Normalized defining polynomial
\( x^{16} - 8 x^{15} + 27 x^{14} - 38 x^{13} + 57 x^{12} - 401 x^{11} + 651 x^{10} + 4547 x^{9} - 15357 x^{8} + 4513 x^{7} + 39317 x^{6} - 50833 x^{5} + 7276 x^{4} + 9972 x^{3} - 2741 x^{2} + 4675 x + 2333 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(870295115683950043241964601=11^{6}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{3927} a^{14} - \frac{166}{3927} a^{13} + \frac{185}{1309} a^{12} - \frac{326}{1309} a^{11} - \frac{10}{119} a^{10} + \frac{1366}{3927} a^{9} - \frac{1634}{3927} a^{8} - \frac{893}{3927} a^{7} - \frac{904}{3927} a^{6} + \frac{1636}{3927} a^{5} - \frac{835}{3927} a^{4} - \frac{106}{561} a^{3} + \frac{14}{561} a^{2} + \frac{1669}{3927} a - \frac{239}{3927}$, $\frac{1}{30611674460882657730208291391721} a^{15} + \frac{555223952985785766235422361}{10203891486960885910069430463907} a^{14} + \frac{1486913468082458156192691742934}{30611674460882657730208291391721} a^{13} + \frac{1546157801583525807877747660210}{10203891486960885910069430463907} a^{12} - \frac{4316903810011311944075414290977}{10203891486960885910069430463907} a^{11} + \frac{4663466269147663220923603523437}{30611674460882657730208291391721} a^{10} + \frac{71126278403579642743763802352}{214067653572605998113344695047} a^{9} - \frac{546409082715319344235971620692}{30611674460882657730208291391721} a^{8} + \frac{3567854599665828415971608090654}{10203891486960885910069430463907} a^{7} - \frac{883909198624180071628851058408}{10203891486960885910069430463907} a^{6} + \frac{21316170507937878957633692077}{351858327136582272761014843583} a^{5} + \frac{69740083783837289437875326509}{336392027042666568463827377931} a^{4} - \frac{4387329235659241817893440228389}{30611674460882657730208291391721} a^{3} + \frac{2767415631834526285968345255813}{10203891486960885910069430463907} a^{2} - \frac{6487799493414112439179193068033}{30611674460882657730208291391721} a - \frac{13589436123447598414180337457368}{30611674460882657730208291391721}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1596248.2912 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.2.30899.1, 4.0.148877.1, 4.2.1637647.1, 8.2.29500764662699.1, 8.2.10502230211.1, 8.0.2681887696609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |