Normalized defining polynomial
\( x^{16} - 2 x^{15} - 20 x^{14} + 4 x^{13} + 168 x^{12} + 325 x^{11} - 953 x^{10} - 2716 x^{9} + 7890 x^{8} + 19766 x^{7} - 48 x^{6} - 99480 x^{5} + 13538 x^{4} + 378341 x^{3} - 102285 x^{2} - 751719 x + 789479 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86874873937477183441455078125=5^{11}\cdot 59^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{4918623566974145814466001276222092974064329} a^{15} - \frac{730375362285818419029149496378323869251119}{4918623566974145814466001276222092974064329} a^{14} - \frac{773438128707524417155127583912715257735458}{1639541188991381938155333758740697658021443} a^{13} + \frac{721443137858695011603075772117411911056158}{1639541188991381938155333758740697658021443} a^{12} - \frac{763849680524885440994286361450768015436116}{1639541188991381938155333758740697658021443} a^{11} + \frac{2021197087803849727683544207978109367982894}{4918623566974145814466001276222092974064329} a^{10} + \frac{1252451220490019652368163104351755100606776}{4918623566974145814466001276222092974064329} a^{9} + \frac{127375881797264298297998255002885739110444}{4918623566974145814466001276222092974064329} a^{8} - \frac{58777071910236338125291768844599436941681}{4918623566974145814466001276222092974064329} a^{7} - \frac{1159625210517541160895446913926469007420256}{4918623566974145814466001276222092974064329} a^{6} + \frac{1151628306010696878856245663530193485330281}{4918623566974145814466001276222092974064329} a^{5} + \frac{1239154652271789035449192358574838475524763}{4918623566974145814466001276222092974064329} a^{4} - \frac{1571308030938226725838959084042457568969144}{4918623566974145814466001276222092974064329} a^{3} + \frac{612051973102148362502704937621754121901181}{1639541188991381938155333758740697658021443} a^{2} + \frac{166324520852924092505017956607174381593068}{702660509567735116352285896603156139152047} a + \frac{366539488133363550726441658928021576559748}{1639541188991381938155333758740697658021443}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25352074.1318 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1475.1, 8.0.37866753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 59 | Data not computed | ||||||