Normalized defining polynomial
\( x^{16} - 8 x^{15} + 196 x^{14} - 1232 x^{13} + 16666 x^{12} - 84344 x^{11} + 812720 x^{10} - 3318856 x^{9} + 24998649 x^{8} - 80960624 x^{7} + 498037052 x^{6} - 1223811416 x^{5} + 6284020592 x^{4} - 10616609960 x^{3} + 45933051828 x^{2} - 40816151264 x + 148857727873 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8684422986556880818624724610318336=2^{48}\cdot 3^{8}\cdot 7^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4368=2^{4}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4368}(1,·)$, $\chi_{4368}(1091,·)$, $\chi_{4368}(1093,·)$, $\chi_{4368}(3457,·)$, $\chi_{4368}(2185,·)$, $\chi_{4368}(3275,·)$, $\chi_{4368}(3277,·)$, $\chi_{4368}(911,·)$, $\chi_{4368}(2003,·)$, $\chi_{4368}(3095,·)$, $\chi_{4368}(4367,·)$, $\chi_{4368}(4187,·)$, $\chi_{4368}(2183,·)$, $\chi_{4368}(181,·)$, $\chi_{4368}(1273,·)$, $\chi_{4368}(2365,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{534789486764709689955289} a^{14} - \frac{7}{534789486764709689955289} a^{13} + \frac{107380807712300708602734}{534789486764709689955289} a^{12} - \frac{109495359509094561661024}{534789486764709689955289} a^{11} + \frac{205447921343364137384671}{534789486764709689955289} a^{10} + \frac{65599436577331076628413}{534789486764709689955289} a^{9} - \frac{123738721702557462200862}{534789486764709689955289} a^{8} - \frac{33511713724377409327430}{534789486764709689955289} a^{7} - \frac{12808662620081044249584}{534789486764709689955289} a^{6} + \frac{191751959855678602625775}{534789486764709689955289} a^{5} - \frac{149810520299934824176245}{534789486764709689955289} a^{4} + \frac{98829902315132240627372}{534789486764709689955289} a^{3} - \frac{239571563030597476558247}{534789486764709689955289} a^{2} - \frac{73486917163987695567}{534789486764709689955289} a - \frac{265121096633876616013643}{534789486764709689955289}$, $\frac{1}{51036347431095426604659283334377} a^{15} + \frac{47716289}{51036347431095426604659283334377} a^{14} - \frac{3411829538280190108708159872556}{51036347431095426604659283334377} a^{13} - \frac{23735640973064563589210258999509}{51036347431095426604659283334377} a^{12} + \frac{1125600058756207524916587523791}{51036347431095426604659283334377} a^{11} - \frac{1128496085218381027428091994165}{51036347431095426604659283334377} a^{10} - \frac{6136795892769844374479812767529}{51036347431095426604659283334377} a^{9} + \frac{11617287089000381673669733722176}{51036347431095426604659283334377} a^{8} + \frac{537145696848712415973848202966}{51036347431095426604659283334377} a^{7} + \frac{13456411316626324127645965460924}{51036347431095426604659283334377} a^{6} - \frac{13615084028143012250125871047260}{51036347431095426604659283334377} a^{5} - \frac{17295705182331289371121398188702}{51036347431095426604659283334377} a^{4} + \frac{11781988839202518140539813487980}{51036347431095426604659283334377} a^{3} + \frac{790208619213008262371275684704}{51036347431095426604659283334377} a^{2} - \frac{8572380977778993724805729349263}{51036347431095426604659283334377} a + \frac{4643048673582352596257387776927}{51036347431095426604659283334377}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{48}\times C_{1248}$, which has order $1916928$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |