/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 8*x^14 + 36*x^12 - 104*x^10 + 62*x^8 + 680*x^6 - 252*x^4 + 392*x^2 + 2401, 16, 26, [0, 8], 8680963974111420152283136, [2, 7], [1, a, a^2, a^3, a^4, a^5, 1/2*a^6 - 1/2*a^4 - 1/2*a^2 - 1/2, 1/2*a^7 - 1/2*a^5 - 1/2*a^3 - 1/2*a, 1/2*a^8 - 1/2, 1/2*a^9 - 1/2*a, 1/2*a^10 - 1/2*a^2, 1/4*a^11 - 1/4*a^10 - 1/4*a^9 - 1/4*a^8 - 1/4*a^3 + 1/4*a^2 + 1/4*a + 1/4, 1/28*a^12 + 3/14*a^10 + 1/28*a^8 - 3/14*a^6 + 13/28*a^4 + 2/7*a^2 - 1/4, 1/28*a^13 - 1/28*a^11 - 1/4*a^10 - 3/14*a^9 - 1/4*a^8 - 3/14*a^7 + 13/28*a^5 - 13/28*a^3 + 1/4*a^2 + 1/4, 1/9060600388*a^14 - 73796997/9060600388*a^12 - 5470569/9060600388*a^10 - 1651171479/9060600388*a^8 - 845141207/9060600388*a^6 - 1989981685/9060600388*a^4 - 438610999/1294371484*a^2 - 85340587/184910212, 1/63424202716*a^15 - 73796997/63424202716*a^13 - 1135310333/31712101358*a^11 - 1/4*a^10 + 306989309/31712101358*a^9 - 1/4*a^8 - 14436041789/63424202716*a^7 + 20661519285/63424202716*a^5 + 1560455291/4530300194*a^3 + 1/4*a^2 - 112011623/647185742*a + 1/4], 1, 6, [6], 1, [ (3735)/(46227553)*a^(14) + (1935)/(92455106)*a^(12) + (3211)/(46227553)*a^(10) - (83441)/(46227553)*a^(8) - (179093)/(46227553)*a^(6) - (106505)/(92455106)*a^(4) - (406357)/(46227553)*a^(2) + (18436987)/(46227553) , (13636979)/(9060600388)*a^(14) - (94213741)/(9060600388)*a^(12) + (360280773)/(9060600388)*a^(10) - (899139221)/(9060600388)*a^(8) - (533910999)/(9060600388)*a^(6) + (8821023889)/(9060600388)*a^(4) + (1493182665)/(1294371484)*a^(2) + (7063821)/(184910212) , (460840)/(323592871)*a^(14) - (11218631)/(1294371484)*a^(12) + (8812448)/(323592871)*a^(10) - (53743713)/(1294371484)*a^(8) - (66035082)/(323592871)*a^(6) + (1462962995)/(1294371484)*a^(4) + (512885094)/(323592871)*a^(2) - (80972313)/(184910212) , (22100695)/(63424202716)*a^(15) - (112010245)/(31712101358)*a^(13) + (1274632017)/(63424202716)*a^(11) - (1207909505)/(15856050679)*a^(9) + (11258214211)/(63424202716)*a^(7) - (1867394233)/(15856050679)*a^(5) - (1622151525)/(9060600388)*a^(3) + (580074149)/(647185742)*a - 1 , (22994177)/(63424202716)*a^(15) + (4832057)/(9060600388)*a^(14) - (258320471)/(63424202716)*a^(13) - (10478151)/(2265150097)*a^(12) + (1613610085)/(63424202716)*a^(11) + (200401557)/(9060600388)*a^(10) - (6834011895)/(63424202716)*a^(9) - (165147131)/(2265150097)*a^(8) + (16829537939)/(63424202716)*a^(7) + (670105591)/(9060600388)*a^(6) - (11103164825)/(63424202716)*a^(5) + (1116411315)/(2265150097)*a^(4) - (2272406783)/(9060600388)*a^(3) - (1129436699)/(1294371484)*a^(2) + (1704958615)/(1294371484)*a + (10147236)/(46227553) , (87599441)/(63424202716)*a^(15) - (32155595)/(9060600388)*a^(14) - (398647661)/(63424202716)*a^(13) + (220858949)/(9060600388)*a^(12) + (898469585)/(63424202716)*a^(11) - (860977981)/(9060600388)*a^(10) - (5885153)/(63424202716)*a^(9) + (2103954367)/(9060600388)*a^(8) - (16937829509)/(63424202716)*a^(7) + (1105079419)/(9060600388)*a^(6) + (51882984229)/(63424202716)*a^(5) - (21311340025)/(9060600388)*a^(4) + (30564118117)/(9060600388)*a^(3) - (3645727485)/(1294371484)*a^(2) + (2163469097)/(1294371484)*a - (30111663)/(184910212) , (15786607)/(15856050679)*a^(15) + (8577383)/(4530300194)*a^(14) - (239110957)/(31712101358)*a^(13) - (153732501)/(9060600388)*a^(12) + (1044607775)/(31712101358)*a^(11) + (389497041)/(4530300194)*a^(10) - (1540496590)/(15856050679)*a^(9) - (2697751519)/(9060600388)*a^(8) + (923773014)/(15856050679)*a^(7) + (2434376781)/(4530300194)*a^(6) + (20059524899)/(31712101358)*a^(5) + (3441116153)/(9060600388)*a^(4) - (1068562895)/(4530300194)*a^(3) - (261834691)/(647185742)*a^(2) + (577229293)/(323592871)*a + (373277263)/(184910212) ], 211544.391067, [[x^2 - 2, 1], [x^4 - 8*x^2 + 14, 1], [x^4 + 4*x^2 + 2, 1], [x^4 + 6*x^2 + 7, 1], [x^8 - 16*x^6 + 48*x^4 - 48*x^2 + 14, 1], [x^8 + 16*x^6 + 80*x^4 + 128*x^2 + 56, 1], [x^8 + 8*x^6 - 8*x^5 + 14*x^4 + 8*x^3 - 16*x^2 + 7, 1]]]