Normalized defining polynomial
\( x^{16} - 8x^{14} + 36x^{12} - 104x^{10} + 62x^{8} + 680x^{6} - 252x^{4} + 392x^{2} + 2401 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(8680963974111420152283136\)
\(\medspace = 2^{66}\cdot 7^{6}\)
|
| |
| Root discriminant: | \(36.20\) |
| |
| Galois root discriminant: | $2^{67/16}7^{1/2}\approx 48.207224374927556$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{128}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{28}a^{12}+\frac{3}{14}a^{10}+\frac{1}{28}a^{8}-\frac{3}{14}a^{6}+\frac{13}{28}a^{4}+\frac{2}{7}a^{2}-\frac{1}{4}$, $\frac{1}{28}a^{13}-\frac{1}{28}a^{11}-\frac{1}{4}a^{10}-\frac{3}{14}a^{9}-\frac{1}{4}a^{8}-\frac{3}{14}a^{7}+\frac{13}{28}a^{5}-\frac{13}{28}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{9060600388}a^{14}-\frac{73796997}{9060600388}a^{12}-\frac{5470569}{9060600388}a^{10}-\frac{1651171479}{9060600388}a^{8}-\frac{845141207}{9060600388}a^{6}-\frac{1989981685}{9060600388}a^{4}-\frac{438610999}{1294371484}a^{2}-\frac{85340587}{184910212}$, $\frac{1}{63424202716}a^{15}-\frac{73796997}{63424202716}a^{13}-\frac{1135310333}{31712101358}a^{11}-\frac{1}{4}a^{10}+\frac{306989309}{31712101358}a^{9}-\frac{1}{4}a^{8}-\frac{14436041789}{63424202716}a^{7}+\frac{20661519285}{63424202716}a^{5}+\frac{1560455291}{4530300194}a^{3}+\frac{1}{4}a^{2}-\frac{112011623}{647185742}a+\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Relative class number: | $6$ (assuming GRH) |
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3735}{46227553}a^{14}+\frac{1935}{92455106}a^{12}+\frac{3211}{46227553}a^{10}-\frac{83441}{46227553}a^{8}-\frac{179093}{46227553}a^{6}-\frac{106505}{92455106}a^{4}-\frac{406357}{46227553}a^{2}+\frac{18436987}{46227553}$, $\frac{13636979}{9060600388}a^{14}-\frac{94213741}{9060600388}a^{12}+\frac{360280773}{9060600388}a^{10}-\frac{899139221}{9060600388}a^{8}-\frac{533910999}{9060600388}a^{6}+\frac{8821023889}{9060600388}a^{4}+\frac{1493182665}{1294371484}a^{2}+\frac{7063821}{184910212}$, $\frac{460840}{323592871}a^{14}-\frac{11218631}{1294371484}a^{12}+\frac{8812448}{323592871}a^{10}-\frac{53743713}{1294371484}a^{8}-\frac{66035082}{323592871}a^{6}+\frac{1462962995}{1294371484}a^{4}+\frac{512885094}{323592871}a^{2}-\frac{80972313}{184910212}$, $\frac{22100695}{63424202716}a^{15}-\frac{112010245}{31712101358}a^{13}+\frac{1274632017}{63424202716}a^{11}-\frac{1207909505}{15856050679}a^{9}+\frac{11258214211}{63424202716}a^{7}-\frac{1867394233}{15856050679}a^{5}-\frac{1622151525}{9060600388}a^{3}+\frac{580074149}{647185742}a-1$, $\frac{22994177}{63424202716}a^{15}+\frac{4832057}{9060600388}a^{14}-\frac{258320471}{63424202716}a^{13}-\frac{10478151}{2265150097}a^{12}+\frac{1613610085}{63424202716}a^{11}+\frac{200401557}{9060600388}a^{10}-\frac{6834011895}{63424202716}a^{9}-\frac{165147131}{2265150097}a^{8}+\frac{16829537939}{63424202716}a^{7}+\frac{670105591}{9060600388}a^{6}-\frac{11103164825}{63424202716}a^{5}+\frac{1116411315}{2265150097}a^{4}-\frac{2272406783}{9060600388}a^{3}-\frac{1129436699}{1294371484}a^{2}+\frac{1704958615}{1294371484}a+\frac{10147236}{46227553}$, $\frac{87599441}{63424202716}a^{15}-\frac{32155595}{9060600388}a^{14}-\frac{398647661}{63424202716}a^{13}+\frac{220858949}{9060600388}a^{12}+\frac{898469585}{63424202716}a^{11}-\frac{860977981}{9060600388}a^{10}-\frac{5885153}{63424202716}a^{9}+\frac{2103954367}{9060600388}a^{8}-\frac{16937829509}{63424202716}a^{7}+\frac{1105079419}{9060600388}a^{6}+\frac{51882984229}{63424202716}a^{5}-\frac{21311340025}{9060600388}a^{4}+\frac{30564118117}{9060600388}a^{3}-\frac{3645727485}{1294371484}a^{2}+\frac{2163469097}{1294371484}a-\frac{30111663}{184910212}$, $\frac{15786607}{15856050679}a^{15}+\frac{8577383}{4530300194}a^{14}-\frac{239110957}{31712101358}a^{13}-\frac{153732501}{9060600388}a^{12}+\frac{1044607775}{31712101358}a^{11}+\frac{389497041}{4530300194}a^{10}-\frac{1540496590}{15856050679}a^{9}-\frac{2697751519}{9060600388}a^{8}+\frac{923773014}{15856050679}a^{7}+\frac{2434376781}{4530300194}a^{6}+\frac{20059524899}{31712101358}a^{5}+\frac{3441116153}{9060600388}a^{4}-\frac{1068562895}{4530300194}a^{3}-\frac{261834691}{647185742}a^{2}+\frac{577229293}{323592871}a+\frac{373277263}{184910212}$
|
| |
| Regulator: | \( 211544.391067 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 211544.391067 \cdot 6}{2\cdot\sqrt{8680963974111420152283136}}\cr\approx \mathstrut & 0.523212052273 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14336.1, 4.0.2048.2, 4.0.7168.1, 8.8.736586891264.1, 8.0.736586891264.1, 8.0.3288334336.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | deg 16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.629 | $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$ | $16$ | $1$ | $66$ | 16T26 | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
|
\(7\)
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |